![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqtopn | Structured version Visualization version GIF version |
Description: The topology of the field of the rational numbers. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
Ref | Expression |
---|---|
qqtopn | ⊢ ((TopOpen‘ℝfld) ↾t ℚ) = (TopOpen‘(ℂfld ↾s ℚ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopn 25128 | . . 3 ⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | |
2 | 1 | oveq1i 7422 | . 2 ⊢ ((topGen‘ran (,)) ↾t ℚ) = ((TopOpen‘ℝfld) ↾t ℚ) |
3 | df-refld 21378 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
4 | 3 | oveq1i 7422 | . . . 4 ⊢ (ℝfld ↾s ℚ) = ((ℂfld ↾s ℝ) ↾s ℚ) |
5 | reex 11204 | . . . . 5 ⊢ ℝ ∈ V | |
6 | qssre 12948 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
7 | ressabs 17199 | . . . . 5 ⊢ ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ)) | |
8 | 5, 6, 7 | mp2an 689 | . . . 4 ⊢ ((ℂfld ↾s ℝ) ↾s ℚ) = (ℂfld ↾s ℚ) |
9 | 4, 8 | eqtr2i 2760 | . . 3 ⊢ (ℂfld ↾s ℚ) = (ℝfld ↾s ℚ) |
10 | 9, 1 | resstopn 22911 | . 2 ⊢ ((topGen‘ran (,)) ↾t ℚ) = (TopOpen‘(ℂfld ↾s ℚ)) |
11 | 2, 10 | eqtr3i 2761 | 1 ⊢ ((TopOpen‘ℝfld) ↾t ℚ) = (TopOpen‘(ℂfld ↾s ℚ)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 ran crn 5677 ‘cfv 6543 (class class class)co 7412 ℝcr 11112 ℚcq 12937 (,)cioo 13329 ↾s cress 17178 ↾t crest 17371 TopOpenctopn 17372 topGenctg 17388 ℂfldccnfld 21145 ℝfldcrefld 21377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-rest 17373 df-topn 17374 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-cnfld 21146 df-refld 21378 df-top 22617 df-topon 22634 df-bases 22670 |
This theorem is referenced by: rrhqima 33293 |
Copyright terms: Public domain | W3C validator |