| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rebase | Structured version Visualization version GIF version | ||
| Description: The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| Ref | Expression |
|---|---|
| rebase | ⊢ ℝ = (Base‘ℝfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11085 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | df-refld 21530 | . . 3 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 3 | cnfldbas 21283 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 2, 3 | ressbas2 17167 | . 2 ⊢ (ℝ ⊆ ℂ → ℝ = (Base‘ℝfld)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ℝ = (Base‘ℝfld) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3905 ‘cfv 6486 ℂcc 11026 ℝcr 11027 Basecbs 17138 ℂfldccnfld 21279 ℝfldcrefld 21529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-cnfld 21280 df-refld 21530 |
| This theorem is referenced by: redvr 21542 retos 21543 resrng 21546 rzgrp 21548 recusp 25298 rrxbase 25304 rrxprds 25305 rrxip 25306 rrxcph 25308 rrxds 25309 rrxvsca 25310 rrxplusgvscavalb 25311 reefgim 26376 reofld 33291 rearchi 33293 xrge0slmod 33295 ccfldextrr 33618 ccfldsrarelvec 33642 ccfldextdgrr 33643 circtopn 33803 rezh 33935 rrhcn 33963 rerrext 33975 qqhre 33986 dya2icoseg2 34245 sitmcl 34318 bj-rveccmod 37275 rrxlines 48719 |
| Copyright terms: Public domain | W3C validator |