![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resubdrg | Structured version Visualization version GIF version |
Description: The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
resubdrg | ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11228 | . . 3 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
2 | readdcl 11221 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
3 | renegcl 11553 | . . 3 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
4 | 1re 11244 | . . 3 ⊢ 1 ∈ ℝ | |
5 | remulcl 11223 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
6 | rereccl 11962 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ) | |
7 | 1, 2, 3, 4, 5, 6 | cnsubdrglem 21350 | . 2 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℝ) ∈ DivRing) |
8 | df-refld 21536 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
9 | 8 | eleq1i 2820 | . . 3 ⊢ (ℝfld ∈ DivRing ↔ (ℂfld ↾s ℝ) ∈ DivRing) |
10 | 9 | anbi2i 622 | . 2 ⊢ ((ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) ↔ (ℝ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℝ) ∈ DivRing)) |
11 | 7, 10 | mpbir 230 | 1 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 ℝcr 11137 ↾s cress 17208 SubRingcsubrg 20505 DivRingcdr 20623 ℂfldccnfld 21278 ℝfldcrefld 21535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-subg 19077 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-cring 20175 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-subrng 20482 df-subrg 20507 df-drng 20625 df-cnfld 21279 df-refld 21536 |
This theorem is referenced by: resubgval 21540 re1r 21544 redvr 21548 refld 21550 rzgrp 21554 recvs 25072 recvsOLD 25073 taylthlem2 26308 taylthlem2OLD 26309 reefgim 26386 circgrp 26485 circsubm 26486 jensenlem2 26919 amgmlem 26921 nn0archi 33059 rrxdim 33308 ccfldextrr 33336 rezh 33572 rerrext 33610 cnrrext 33611 zrhre 33620 qqhre 33621 bj-rveccmod 36781 amgmwlem 48235 |
Copyright terms: Public domain | W3C validator |