MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  retos Structured version   Visualization version   GIF version

Theorem retos 21610
Description: The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.)
Assertion
Ref Expression
retos fld ∈ Toset

Proof of Theorem retos
StepHypRef Expression
1 ltso 11335 . 2 < Or ℝ
2 idref 7152 . . 3 (( I ↾ ℝ) ⊆ ≤ ↔ ∀𝑥 ∈ ℝ 𝑥𝑥)
3 leid 11351 . . 3 (𝑥 ∈ ℝ → 𝑥𝑥)
42, 3mprgbir 3058 . 2 ( I ↾ ℝ) ⊆ ≤
5 df-refld 21597 . . . 4 fld = (ℂflds ℝ)
65ovexi 7450 . . 3 fld ∈ V
7 rebase 21598 . . . 4 ℝ = (Base‘ℝfld)
8 rele2 21606 . . . 4 ≤ = (le‘ℝfld)
9 relt 21607 . . . 4 < = (lt‘ℝfld)
107, 8, 9tosso 18439 . . 3 (ℝfld ∈ V → (ℝfld ∈ Toset ↔ ( < Or ℝ ∧ ( I ↾ ℝ) ⊆ ≤ )))
116, 10ax-mp 5 . 2 (ℝfld ∈ Toset ↔ ( < Or ℝ ∧ ( I ↾ ℝ) ⊆ ≤ ))
121, 4, 11mpbir2an 709 1 fld ∈ Toset
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2099  Vcvv 3462  wss 3946   class class class wbr 5145   I cid 5571   Or wor 5585  cres 5676  cr 11148   < clt 11289  cle 11290  s cress 17237  Tosetctos 18436  fldccnfld 21339  fldcrefld 21596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-proset 18315  df-poset 18333  df-plt 18350  df-toset 18437  df-ps 18586  df-tsr 18587  df-cnfld 21340  df-refld 21597
This theorem is referenced by:  reofld  33225  nn0archi  33228
  Copyright terms: Public domain W3C validator