| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reefgim | Structured version Visualization version GIF version | ||
| Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| reefgim.1 | ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) |
| Ref | Expression |
|---|---|
| reefgim | ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rebase 21547 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 2 | eqid 2733 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 3 | 2 | rpmsubg 21372 | . . . . 5 ⊢ ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
| 4 | reefgim.1 | . . . . . . 7 ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) | |
| 5 | cnex 11096 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
| 6 | 5 | difexi 5272 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) ∈ V |
| 7 | rpcndif0 12915 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) | |
| 8 | 7 | ssriv 3934 | . . . . . . . 8 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
| 9 | ressabs 17163 | . . . . . . . 8 ⊢ (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+)) | |
| 10 | 6, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+) |
| 11 | 4, 10 | eqtr4i 2759 | . . . . . 6 ⊢ 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) |
| 12 | 11 | subgbas 19047 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃)) |
| 13 | 3, 12 | ax-mp 5 | . . . 4 ⊢ ℝ+ = (Base‘𝑃) |
| 14 | replusg 21551 | . . . 4 ⊢ + = (+g‘ℝfld) | |
| 15 | eqid 2733 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 16 | cnfldmul 21303 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 17 | 15, 16 | mgpplusg 20066 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 18 | 4, 17 | ressplusg 17199 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g‘𝑃)) |
| 19 | 3, 18 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑃) |
| 20 | resubdrg 21549 | . . . . . . 7 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 21 | 20 | simpli 483 | . . . . . 6 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 22 | df-refld 21546 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 23 | 22 | subrgring 20493 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring) |
| 24 | 21, 23 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring |
| 25 | ringgrp 20160 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
| 26 | 24, 25 | mp1i 13 | . . . 4 ⊢ (⊤ → ℝfld ∈ Grp) |
| 27 | 11 | subggrp 19046 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp) |
| 28 | 3, 27 | mp1i 13 | . . . 4 ⊢ (⊤ → 𝑃 ∈ Grp) |
| 29 | reeff1o 26387 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
| 30 | f1of 6770 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 31 | 29, 30 | mp1i 13 | . . . 4 ⊢ (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+) |
| 32 | recn 11105 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 33 | recn 11105 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 34 | efadd 16005 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) | |
| 35 | 32, 33, 34 | syl2an 596 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
| 36 | readdcl 11098 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
| 37 | 36 | fvresd 6850 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦))) |
| 38 | fvres 6849 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 39 | fvres 6849 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
| 40 | 38, 39 | oveqan12d 7373 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
| 41 | 35, 37, 40 | 3eqtr4d 2778 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
| 42 | 41 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
| 43 | 1, 13, 14, 19, 26, 28, 31, 42 | isghmd 19141 | . . 3 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)) |
| 44 | 43 | mptru 1548 | . 2 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) |
| 45 | 1, 13 | isgim 19178 | . 2 ⊢ ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)) |
| 46 | 44, 29, 45 | mpbir2an 711 | 1 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 ↾ cres 5623 ⟶wf 6484 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 0cc0 11015 + caddc 11018 · cmul 11020 ℝ+crp 12894 expce 15972 Basecbs 17124 ↾s cress 17145 +gcplusg 17165 Grpcgrp 18850 SubGrpcsubg 19037 GrpHom cghm 19128 GrpIso cgim 19173 mulGrpcmgp 20062 Ringcrg 20155 SubRingcsubrg 20488 DivRingcdr 20648 ℂfldccnfld 21295 ℝfldcrefld 21545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 ax-mulf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ioo 13253 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-fac 14185 df-bc 14214 df-hash 14242 df-shft 14978 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-limsup 15382 df-clim 15399 df-rlim 15400 df-sum 15598 df-ef 15978 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-grp 18853 df-minusg 18854 df-mulg 18985 df-subg 19040 df-ghm 19129 df-gim 19175 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-subrng 20465 df-subrg 20489 df-drng 20650 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-fbas 21292 df-fg 21293 df-cnfld 21296 df-refld 21546 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cld 22937 df-ntr 22938 df-cls 22939 df-nei 23016 df-lp 23054 df-perf 23055 df-cn 23145 df-cnp 23146 df-haus 23233 df-tx 23480 df-hmeo 23673 df-fil 23764 df-fm 23856 df-flim 23857 df-flf 23858 df-xms 24238 df-ms 24239 df-tms 24240 df-cncf 24801 df-limc 25797 df-dv 25798 |
| This theorem is referenced by: reloggim 26538 |
| Copyright terms: Public domain | W3C validator |