MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reefgim Structured version   Visualization version   GIF version

Theorem reefgim 26360
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
reefgim.1 𝑃 = ((mulGrp‘ℂfld) ↾s+)
Assertion
Ref Expression
reefgim (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃)

Proof of Theorem reefgim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rebase 21515 . . . 4 ℝ = (Base‘ℝfld)
2 eqid 2729 . . . . . 6 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
32rpmsubg 21348 . . . . 5 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
4 reefgim.1 . . . . . . 7 𝑃 = ((mulGrp‘ℂfld) ↾s+)
5 cnex 11149 . . . . . . . . 9 ℂ ∈ V
65difexi 5285 . . . . . . . 8 (ℂ ∖ {0}) ∈ V
7 rpcndif0 12972 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ {0}))
87ssriv 3950 . . . . . . . 8 + ⊆ (ℂ ∖ {0})
9 ressabs 17218 . . . . . . . 8 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
106, 8, 9mp2an 692 . . . . . . 7 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
114, 10eqtr4i 2755 . . . . . 6 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
1211subgbas 19062 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃))
133, 12ax-mp 5 . . . 4 + = (Base‘𝑃)
14 replusg 21519 . . . 4 + = (+g‘ℝfld)
15 eqid 2729 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
16 cnfldmul 21272 . . . . . . 7 · = (.r‘ℂfld)
1715, 16mgpplusg 20053 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
184, 17ressplusg 17254 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g𝑃))
193, 18ax-mp 5 . . . 4 · = (+g𝑃)
20 resubdrg 21517 . . . . . . 7 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
2120simpli 483 . . . . . 6 ℝ ∈ (SubRing‘ℂfld)
22 df-refld 21514 . . . . . . 7 fld = (ℂflds ℝ)
2322subrgring 20483 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
2421, 23ax-mp 5 . . . . 5 fld ∈ Ring
25 ringgrp 20147 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Grp)
2624, 25mp1i 13 . . . 4 (⊤ → ℝfld ∈ Grp)
2711subggrp 19061 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp)
283, 27mp1i 13 . . . 4 (⊤ → 𝑃 ∈ Grp)
29 reeff1o 26357 . . . . 5 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
30 f1of 6800 . . . . 5 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3129, 30mp1i 13 . . . 4 (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+)
32 recn 11158 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
33 recn 11158 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
34 efadd 16060 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
3532, 33, 34syl2an 596 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
36 readdcl 11151 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3736fvresd 6878 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦)))
38 fvres 6877 . . . . . . 7 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
39 fvres 6877 . . . . . . 7 (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦))
4038, 39oveqan12d 7406 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
4135, 37, 403eqtr4d 2774 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)))
4241adantl 481 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)))
431, 13, 14, 19, 26, 28, 31, 42isghmd 19157 . . 3 (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃))
4443mptru 1547 . 2 (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)
451, 13isgim 19194 . 2 ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+))
4644, 29, 45mpbir2an 711 1 (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  cres 5640  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073  +crp 12951  expce 16027  Basecbs 17179  s cress 17200  +gcplusg 17220  Grpcgrp 18865  SubGrpcsubg 19052   GrpHom cghm 19144   GrpIso cgim 19189  mulGrpcmgp 20049  Ringcrg 20142  SubRingcsubrg 20478  DivRingcdr 20638  fldccnfld 21264  fldcrefld 21513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-subrng 20455  df-subrg 20479  df-drng 20640  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-refld 21514  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  reloggim  26508
  Copyright terms: Public domain W3C validator