| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reefgim | Structured version Visualization version GIF version | ||
| Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| reefgim.1 | ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) |
| Ref | Expression |
|---|---|
| reefgim | ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rebase 21531 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 3 | 2 | rpmsubg 21356 | . . . . 5 ⊢ ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
| 4 | reefgim.1 | . . . . . . 7 ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) | |
| 5 | cnex 11109 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
| 6 | 5 | difexi 5272 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) ∈ V |
| 7 | rpcndif0 12932 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) | |
| 8 | 7 | ssriv 3941 | . . . . . . . 8 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
| 9 | ressabs 17177 | . . . . . . . 8 ⊢ (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+)) | |
| 10 | 6, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+) |
| 11 | 4, 10 | eqtr4i 2755 | . . . . . 6 ⊢ 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) |
| 12 | 11 | subgbas 19027 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃)) |
| 13 | 3, 12 | ax-mp 5 | . . . 4 ⊢ ℝ+ = (Base‘𝑃) |
| 14 | replusg 21535 | . . . 4 ⊢ + = (+g‘ℝfld) | |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 16 | cnfldmul 21287 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 17 | 15, 16 | mgpplusg 20047 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 18 | 4, 17 | ressplusg 17213 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g‘𝑃)) |
| 19 | 3, 18 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑃) |
| 20 | resubdrg 21533 | . . . . . . 7 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 21 | 20 | simpli 483 | . . . . . 6 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 22 | df-refld 21530 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 23 | 22 | subrgring 20477 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring) |
| 24 | 21, 23 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring |
| 25 | ringgrp 20141 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
| 26 | 24, 25 | mp1i 13 | . . . 4 ⊢ (⊤ → ℝfld ∈ Grp) |
| 27 | 11 | subggrp 19026 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp) |
| 28 | 3, 27 | mp1i 13 | . . . 4 ⊢ (⊤ → 𝑃 ∈ Grp) |
| 29 | reeff1o 26373 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
| 30 | f1of 6768 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 31 | 29, 30 | mp1i 13 | . . . 4 ⊢ (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+) |
| 32 | recn 11118 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 33 | recn 11118 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 34 | efadd 16019 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) | |
| 35 | 32, 33, 34 | syl2an 596 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
| 36 | readdcl 11111 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
| 37 | 36 | fvresd 6846 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦))) |
| 38 | fvres 6845 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 39 | fvres 6845 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
| 40 | 38, 39 | oveqan12d 7372 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
| 41 | 35, 37, 40 | 3eqtr4d 2774 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
| 42 | 41 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
| 43 | 1, 13, 14, 19, 26, 28, 31, 42 | isghmd 19122 | . . 3 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)) |
| 44 | 43 | mptru 1547 | . 2 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) |
| 45 | 1, 13 | isgim 19159 | . 2 ⊢ ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)) |
| 46 | 44, 29, 45 | mpbir2an 711 | 1 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 ↾ cres 5625 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 + caddc 11031 · cmul 11033 ℝ+crp 12911 expce 15986 Basecbs 17138 ↾s cress 17159 +gcplusg 17179 Grpcgrp 18830 SubGrpcsubg 19017 GrpHom cghm 19109 GrpIso cgim 19154 mulGrpcmgp 20043 Ringcrg 20136 SubRingcsubrg 20472 DivRingcdr 20632 ℂfldccnfld 21279 ℝfldcrefld 21529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-subrng 20449 df-subrg 20473 df-drng 20634 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-refld 21530 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: reloggim 26524 |
| Copyright terms: Public domain | W3C validator |