![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reefgim | Structured version Visualization version GIF version |
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
reefgim.1 | β’ π = ((mulGrpββfld) βΎs β+) |
Ref | Expression |
---|---|
reefgim | β’ (exp βΎ β) β (βfld GrpIso π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rebase 21378 | . . . 4 β’ β = (Baseββfld) | |
2 | eqid 2732 | . . . . . 6 β’ ((mulGrpββfld) βΎs (β β {0})) = ((mulGrpββfld) βΎs (β β {0})) | |
3 | 2 | rpmsubg 21209 | . . . . 5 β’ β+ β (SubGrpβ((mulGrpββfld) βΎs (β β {0}))) |
4 | reefgim.1 | . . . . . . 7 β’ π = ((mulGrpββfld) βΎs β+) | |
5 | cnex 11193 | . . . . . . . . 9 β’ β β V | |
6 | 5 | difexi 5328 | . . . . . . . 8 β’ (β β {0}) β V |
7 | rpcndif0 12997 | . . . . . . . . 9 β’ (π₯ β β+ β π₯ β (β β {0})) | |
8 | 7 | ssriv 3986 | . . . . . . . 8 β’ β+ β (β β {0}) |
9 | ressabs 17198 | . . . . . . . 8 β’ (((β β {0}) β V β§ β+ β (β β {0})) β (((mulGrpββfld) βΎs (β β {0})) βΎs β+) = ((mulGrpββfld) βΎs β+)) | |
10 | 6, 8, 9 | mp2an 690 | . . . . . . 7 β’ (((mulGrpββfld) βΎs (β β {0})) βΎs β+) = ((mulGrpββfld) βΎs β+) |
11 | 4, 10 | eqtr4i 2763 | . . . . . 6 β’ π = (((mulGrpββfld) βΎs (β β {0})) βΎs β+) |
12 | 11 | subgbas 19046 | . . . . 5 β’ (β+ β (SubGrpβ((mulGrpββfld) βΎs (β β {0}))) β β+ = (Baseβπ)) |
13 | 3, 12 | ax-mp 5 | . . . 4 β’ β+ = (Baseβπ) |
14 | replusg 21382 | . . . 4 β’ + = (+gββfld) | |
15 | eqid 2732 | . . . . . . 7 β’ (mulGrpββfld) = (mulGrpββfld) | |
16 | cnfldmul 21150 | . . . . . . 7 β’ Β· = (.rββfld) | |
17 | 15, 16 | mgpplusg 20032 | . . . . . 6 β’ Β· = (+gβ(mulGrpββfld)) |
18 | 4, 17 | ressplusg 17239 | . . . . 5 β’ (β+ β (SubGrpβ((mulGrpββfld) βΎs (β β {0}))) β Β· = (+gβπ)) |
19 | 3, 18 | ax-mp 5 | . . . 4 β’ Β· = (+gβπ) |
20 | resubdrg 21380 | . . . . . . 7 β’ (β β (SubRingββfld) β§ βfld β DivRing) | |
21 | 20 | simpli 484 | . . . . . 6 β’ β β (SubRingββfld) |
22 | df-refld 21377 | . . . . . . 7 β’ βfld = (βfld βΎs β) | |
23 | 22 | subrgring 20464 | . . . . . 6 β’ (β β (SubRingββfld) β βfld β Ring) |
24 | 21, 23 | ax-mp 5 | . . . . 5 β’ βfld β Ring |
25 | ringgrp 20132 | . . . . 5 β’ (βfld β Ring β βfld β Grp) | |
26 | 24, 25 | mp1i 13 | . . . 4 β’ (β€ β βfld β Grp) |
27 | 11 | subggrp 19045 | . . . . 5 β’ (β+ β (SubGrpβ((mulGrpββfld) βΎs (β β {0}))) β π β Grp) |
28 | 3, 27 | mp1i 13 | . . . 4 β’ (β€ β π β Grp) |
29 | reeff1o 26183 | . . . . 5 β’ (exp βΎ β):ββ1-1-ontoββ+ | |
30 | f1of 6833 | . . . . 5 β’ ((exp βΎ β):ββ1-1-ontoββ+ β (exp βΎ β):ββΆβ+) | |
31 | 29, 30 | mp1i 13 | . . . 4 β’ (β€ β (exp βΎ β):ββΆβ+) |
32 | recn 11202 | . . . . . . 7 β’ (π₯ β β β π₯ β β) | |
33 | recn 11202 | . . . . . . 7 β’ (π¦ β β β π¦ β β) | |
34 | efadd 16041 | . . . . . . 7 β’ ((π₯ β β β§ π¦ β β) β (expβ(π₯ + π¦)) = ((expβπ₯) Β· (expβπ¦))) | |
35 | 32, 33, 34 | syl2an 596 | . . . . . 6 β’ ((π₯ β β β§ π¦ β β) β (expβ(π₯ + π¦)) = ((expβπ₯) Β· (expβπ¦))) |
36 | readdcl 11195 | . . . . . . 7 β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) β β) | |
37 | 36 | fvresd 6911 | . . . . . 6 β’ ((π₯ β β β§ π¦ β β) β ((exp βΎ β)β(π₯ + π¦)) = (expβ(π₯ + π¦))) |
38 | fvres 6910 | . . . . . . 7 β’ (π₯ β β β ((exp βΎ β)βπ₯) = (expβπ₯)) | |
39 | fvres 6910 | . . . . . . 7 β’ (π¦ β β β ((exp βΎ β)βπ¦) = (expβπ¦)) | |
40 | 38, 39 | oveqan12d 7430 | . . . . . 6 β’ ((π₯ β β β§ π¦ β β) β (((exp βΎ β)βπ₯) Β· ((exp βΎ β)βπ¦)) = ((expβπ₯) Β· (expβπ¦))) |
41 | 35, 37, 40 | 3eqtr4d 2782 | . . . . 5 β’ ((π₯ β β β§ π¦ β β) β ((exp βΎ β)β(π₯ + π¦)) = (((exp βΎ β)βπ₯) Β· ((exp βΎ β)βπ¦))) |
42 | 41 | adantl 482 | . . . 4 β’ ((β€ β§ (π₯ β β β§ π¦ β β)) β ((exp βΎ β)β(π₯ + π¦)) = (((exp βΎ β)βπ₯) Β· ((exp βΎ β)βπ¦))) |
43 | 1, 13, 14, 19, 26, 28, 31, 42 | isghmd 19139 | . . 3 β’ (β€ β (exp βΎ β) β (βfld GrpHom π)) |
44 | 43 | mptru 1548 | . 2 β’ (exp βΎ β) β (βfld GrpHom π) |
45 | 1, 13 | isgim 19176 | . 2 β’ ((exp βΎ β) β (βfld GrpIso π) β ((exp βΎ β) β (βfld GrpHom π) β§ (exp βΎ β):ββ1-1-ontoββ+)) |
46 | 44, 29, 45 | mpbir2an 709 | 1 β’ (exp βΎ β) β (βfld GrpIso π) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β€wtru 1542 β wcel 2106 Vcvv 3474 β cdif 3945 β wss 3948 {csn 4628 βΎ cres 5678 βΆwf 6539 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7411 βcc 11110 βcr 11111 0cc0 11112 + caddc 11115 Β· cmul 11117 β+crp 12978 expce 16009 Basecbs 17148 βΎs cress 17177 +gcplusg 17201 Grpcgrp 18855 SubGrpcsubg 19036 GrpHom cghm 19127 GrpIso cgim 19171 mulGrpcmgp 20028 Ringcrg 20127 SubRingcsubrg 20457 DivRingcdr 20500 βfldccnfld 21144 βfldcrefld 21376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-fac 14238 df-bc 14267 df-hash 14295 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-mulg 18987 df-subg 19039 df-ghm 19128 df-gim 19173 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-subrng 20434 df-subrg 20459 df-drng 20502 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-refld 21377 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 df-limc 25607 df-dv 25608 |
This theorem is referenced by: reloggim 26331 |
Copyright terms: Public domain | W3C validator |