MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reefgim Structured version   Visualization version   GIF version

Theorem reefgim 26494
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
reefgim.1 𝑃 = ((mulGrp‘ℂfld) ↾s+)
Assertion
Ref Expression
reefgim (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃)

Proof of Theorem reefgim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rebase 21624 . . . 4 ℝ = (Base‘ℝfld)
2 eqid 2737 . . . . . 6 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
32rpmsubg 21449 . . . . 5 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
4 reefgim.1 . . . . . . 7 𝑃 = ((mulGrp‘ℂfld) ↾s+)
5 cnex 11236 . . . . . . . . 9 ℂ ∈ V
65difexi 5330 . . . . . . . 8 (ℂ ∖ {0}) ∈ V
7 rpcndif0 13054 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ {0}))
87ssriv 3987 . . . . . . . 8 + ⊆ (ℂ ∖ {0})
9 ressabs 17294 . . . . . . . 8 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
106, 8, 9mp2an 692 . . . . . . 7 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
114, 10eqtr4i 2768 . . . . . 6 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
1211subgbas 19148 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃))
133, 12ax-mp 5 . . . 4 + = (Base‘𝑃)
14 replusg 21628 . . . 4 + = (+g‘ℝfld)
15 eqid 2737 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
16 cnfldmul 21372 . . . . . . 7 · = (.r‘ℂfld)
1715, 16mgpplusg 20141 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
184, 17ressplusg 17334 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g𝑃))
193, 18ax-mp 5 . . . 4 · = (+g𝑃)
20 resubdrg 21626 . . . . . . 7 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
2120simpli 483 . . . . . 6 ℝ ∈ (SubRing‘ℂfld)
22 df-refld 21623 . . . . . . 7 fld = (ℂflds ℝ)
2322subrgring 20574 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
2421, 23ax-mp 5 . . . . 5 fld ∈ Ring
25 ringgrp 20235 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Grp)
2624, 25mp1i 13 . . . 4 (⊤ → ℝfld ∈ Grp)
2711subggrp 19147 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp)
283, 27mp1i 13 . . . 4 (⊤ → 𝑃 ∈ Grp)
29 reeff1o 26491 . . . . 5 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
30 f1of 6848 . . . . 5 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3129, 30mp1i 13 . . . 4 (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+)
32 recn 11245 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
33 recn 11245 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
34 efadd 16130 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
3532, 33, 34syl2an 596 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
36 readdcl 11238 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3736fvresd 6926 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦)))
38 fvres 6925 . . . . . . 7 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
39 fvres 6925 . . . . . . 7 (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦))
4038, 39oveqan12d 7450 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
4135, 37, 403eqtr4d 2787 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)))
4241adantl 481 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)))
431, 13, 14, 19, 26, 28, 31, 42isghmd 19243 . . 3 (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃))
4443mptru 1547 . 2 (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)
451, 13isgim 19280 . 2 ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+))
4644, 29, 45mpbir2an 711 1 (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2108  Vcvv 3480  cdif 3948  wss 3951  {csn 4626  cres 5687  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160  +crp 13034  expce 16097  Basecbs 17247  s cress 17274  +gcplusg 17297  Grpcgrp 18951  SubGrpcsubg 19138   GrpHom cghm 19230   GrpIso cgim 19275  mulGrpcmgp 20137  Ringcrg 20230  SubRingcsubrg 20569  DivRingcdr 20729  fldccnfld 21364  fldcrefld 21622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrng 20546  df-subrg 20570  df-drng 20731  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-refld 21623  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  reloggim  26641
  Copyright terms: Public domain W3C validator