Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reefgim | Structured version Visualization version GIF version |
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
reefgim.1 | ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) |
Ref | Expression |
---|---|
reefgim | ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rebase 20917 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
2 | eqid 2736 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
3 | 2 | rpmsubg 20768 | . . . . 5 ⊢ ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
4 | reefgim.1 | . . . . . . 7 ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) | |
5 | cnex 11053 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
6 | 5 | difexi 5272 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) ∈ V |
7 | rpcndif0 12850 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) | |
8 | 7 | ssriv 3936 | . . . . . . . 8 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
9 | ressabs 17056 | . . . . . . . 8 ⊢ (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+)) | |
10 | 6, 8, 9 | mp2an 689 | . . . . . . 7 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+) |
11 | 4, 10 | eqtr4i 2767 | . . . . . 6 ⊢ 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) |
12 | 11 | subgbas 18855 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃)) |
13 | 3, 12 | ax-mp 5 | . . . 4 ⊢ ℝ+ = (Base‘𝑃) |
14 | replusg 20921 | . . . 4 ⊢ + = (+g‘ℝfld) | |
15 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
16 | cnfldmul 20709 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
17 | 15, 16 | mgpplusg 19819 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
18 | 4, 17 | ressplusg 17097 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g‘𝑃)) |
19 | 3, 18 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑃) |
20 | resubdrg 20919 | . . . . . . 7 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
21 | 20 | simpli 484 | . . . . . 6 ⊢ ℝ ∈ (SubRing‘ℂfld) |
22 | df-refld 20916 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
23 | 22 | subrgring 20132 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring) |
24 | 21, 23 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring |
25 | ringgrp 19883 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
26 | 24, 25 | mp1i 13 | . . . 4 ⊢ (⊤ → ℝfld ∈ Grp) |
27 | 11 | subggrp 18854 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp) |
28 | 3, 27 | mp1i 13 | . . . 4 ⊢ (⊤ → 𝑃 ∈ Grp) |
29 | reeff1o 25712 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
30 | f1of 6767 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
31 | 29, 30 | mp1i 13 | . . . 4 ⊢ (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+) |
32 | recn 11062 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
33 | recn 11062 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
34 | efadd 15902 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) | |
35 | 32, 33, 34 | syl2an 596 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
36 | readdcl 11055 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
37 | 36 | fvresd 6845 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦))) |
38 | fvres 6844 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
39 | fvres 6844 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
40 | 38, 39 | oveqan12d 7356 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
41 | 35, 37, 40 | 3eqtr4d 2786 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
42 | 41 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
43 | 1, 13, 14, 19, 26, 28, 31, 42 | isghmd 18939 | . . 3 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)) |
44 | 43 | mptru 1547 | . 2 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) |
45 | 1, 13 | isgim 18974 | . 2 ⊢ ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)) |
46 | 44, 29, 45 | mpbir2an 708 | 1 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3895 ⊆ wss 3898 {csn 4573 ↾ cres 5622 ⟶wf 6475 –1-1-onto→wf1o 6478 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 ℝcr 10971 0cc0 10972 + caddc 10975 · cmul 10977 ℝ+crp 12831 expce 15870 Basecbs 17009 ↾s cress 17038 +gcplusg 17059 Grpcgrp 18673 SubGrpcsubg 18845 GrpHom cghm 18927 GrpIso cgim 18969 mulGrpcmgp 19815 Ringcrg 19878 DivRingcdr 20093 SubRingcsubrg 20125 ℂfldccnfld 20703 ℝfldcrefld 20915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-er 8569 df-map 8688 df-pm 8689 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ioo 13184 df-ico 13186 df-icc 13187 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-fac 14089 df-bc 14118 df-hash 14146 df-shft 14877 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-ef 15876 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-minusg 18677 df-mulg 18797 df-subg 18848 df-ghm 18928 df-gim 18971 df-cntz 19019 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-cring 19881 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-drng 20095 df-subrg 20127 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-refld 20916 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-lp 22393 df-perf 22394 df-cn 22484 df-cnp 22485 df-haus 22572 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-xms 23579 df-ms 23580 df-tms 23581 df-cncf 24147 df-limc 25136 df-dv 25137 |
This theorem is referenced by: reloggim 25860 |
Copyright terms: Public domain | W3C validator |