MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reefgim Structured version   Visualization version   GIF version

Theorem reefgim 25715
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
reefgim.1 𝑃 = ((mulGrp‘ℂfld) ↾s+)
Assertion
Ref Expression
reefgim (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃)

Proof of Theorem reefgim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rebase 20917 . . . 4 ℝ = (Base‘ℝfld)
2 eqid 2736 . . . . . 6 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
32rpmsubg 20768 . . . . 5 + ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
4 reefgim.1 . . . . . . 7 𝑃 = ((mulGrp‘ℂfld) ↾s+)
5 cnex 11053 . . . . . . . . 9 ℂ ∈ V
65difexi 5272 . . . . . . . 8 (ℂ ∖ {0}) ∈ V
7 rpcndif0 12850 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ {0}))
87ssriv 3936 . . . . . . . 8 + ⊆ (ℂ ∖ {0})
9 ressabs 17056 . . . . . . . 8 (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+))
106, 8, 9mp2an 689 . . . . . . 7 (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+) = ((mulGrp‘ℂfld) ↾s+)
114, 10eqtr4i 2767 . . . . . 6 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s+)
1211subgbas 18855 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃))
133, 12ax-mp 5 . . . 4 + = (Base‘𝑃)
14 replusg 20921 . . . 4 + = (+g‘ℝfld)
15 eqid 2736 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
16 cnfldmul 20709 . . . . . . 7 · = (.r‘ℂfld)
1715, 16mgpplusg 19819 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
184, 17ressplusg 17097 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g𝑃))
193, 18ax-mp 5 . . . 4 · = (+g𝑃)
20 resubdrg 20919 . . . . . . 7 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
2120simpli 484 . . . . . 6 ℝ ∈ (SubRing‘ℂfld)
22 df-refld 20916 . . . . . . 7 fld = (ℂflds ℝ)
2322subrgring 20132 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
2421, 23ax-mp 5 . . . . 5 fld ∈ Ring
25 ringgrp 19883 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Grp)
2624, 25mp1i 13 . . . 4 (⊤ → ℝfld ∈ Grp)
2711subggrp 18854 . . . . 5 (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp)
283, 27mp1i 13 . . . 4 (⊤ → 𝑃 ∈ Grp)
29 reeff1o 25712 . . . . 5 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
30 f1of 6767 . . . . 5 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
3129, 30mp1i 13 . . . 4 (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+)
32 recn 11062 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
33 recn 11062 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
34 efadd 15902 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
3532, 33, 34syl2an 596 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
36 readdcl 11055 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3736fvresd 6845 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦)))
38 fvres 6844 . . . . . . 7 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
39 fvres 6844 . . . . . . 7 (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦))
4038, 39oveqan12d 7356 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦)))
4135, 37, 403eqtr4d 2786 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)))
4241adantl 482 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)))
431, 13, 14, 19, 26, 28, 31, 42isghmd 18939 . . 3 (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃))
4443mptru 1547 . 2 (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)
451, 13isgim 18974 . 2 ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+))
4644, 29, 45mpbir2an 708 1 (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1540  wtru 1541  wcel 2105  Vcvv 3441  cdif 3895  wss 3898  {csn 4573  cres 5622  wf 6475  1-1-ontowf1o 6478  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972   + caddc 10975   · cmul 10977  +crp 12831  expce 15870  Basecbs 17009  s cress 17038  +gcplusg 17059  Grpcgrp 18673  SubGrpcsubg 18845   GrpHom cghm 18927   GrpIso cgim 18969  mulGrpcmgp 19815  Ringcrg 19878  DivRingcdr 20093  SubRingcsubrg 20125  fldccnfld 20703  fldcrefld 20915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-tpos 8112  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-grp 18676  df-minusg 18677  df-mulg 18797  df-subg 18848  df-ghm 18928  df-gim 18971  df-cntz 19019  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-dvr 20020  df-drng 20095  df-subrg 20127  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-refld 20916  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137
This theorem is referenced by:  reloggim  25860
  Copyright terms: Public domain W3C validator