|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > reefgim | Structured version Visualization version GIF version | ||
| Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) | 
| Ref | Expression | 
|---|---|
| reefgim.1 | ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) | 
| Ref | Expression | 
|---|---|
| reefgim | ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rebase 21624 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 2 | eqid 2737 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 3 | 2 | rpmsubg 21449 | . . . . 5 ⊢ ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) | 
| 4 | reefgim.1 | . . . . . . 7 ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) | |
| 5 | cnex 11236 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
| 6 | 5 | difexi 5330 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) ∈ V | 
| 7 | rpcndif0 13054 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) | |
| 8 | 7 | ssriv 3987 | . . . . . . . 8 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) | 
| 9 | ressabs 17294 | . . . . . . . 8 ⊢ (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+)) | |
| 10 | 6, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+) | 
| 11 | 4, 10 | eqtr4i 2768 | . . . . . 6 ⊢ 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) | 
| 12 | 11 | subgbas 19148 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃)) | 
| 13 | 3, 12 | ax-mp 5 | . . . 4 ⊢ ℝ+ = (Base‘𝑃) | 
| 14 | replusg 21628 | . . . 4 ⊢ + = (+g‘ℝfld) | |
| 15 | eqid 2737 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 16 | cnfldmul 21372 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 17 | 15, 16 | mgpplusg 20141 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) | 
| 18 | 4, 17 | ressplusg 17334 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g‘𝑃)) | 
| 19 | 3, 18 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑃) | 
| 20 | resubdrg 21626 | . . . . . . 7 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 21 | 20 | simpli 483 | . . . . . 6 ⊢ ℝ ∈ (SubRing‘ℂfld) | 
| 22 | df-refld 21623 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 23 | 22 | subrgring 20574 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring) | 
| 24 | 21, 23 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring | 
| 25 | ringgrp 20235 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
| 26 | 24, 25 | mp1i 13 | . . . 4 ⊢ (⊤ → ℝfld ∈ Grp) | 
| 27 | 11 | subggrp 19147 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp) | 
| 28 | 3, 27 | mp1i 13 | . . . 4 ⊢ (⊤ → 𝑃 ∈ Grp) | 
| 29 | reeff1o 26491 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
| 30 | f1of 6848 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 31 | 29, 30 | mp1i 13 | . . . 4 ⊢ (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+) | 
| 32 | recn 11245 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 33 | recn 11245 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 34 | efadd 16130 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) | |
| 35 | 32, 33, 34 | syl2an 596 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) | 
| 36 | readdcl 11238 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
| 37 | 36 | fvresd 6926 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦))) | 
| 38 | fvres 6925 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 39 | fvres 6925 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
| 40 | 38, 39 | oveqan12d 7450 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) | 
| 41 | 35, 37, 40 | 3eqtr4d 2787 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) | 
| 42 | 41 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) | 
| 43 | 1, 13, 14, 19, 26, 28, 31, 42 | isghmd 19243 | . . 3 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)) | 
| 44 | 43 | mptru 1547 | . 2 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) | 
| 45 | 1, 13 | isgim 19280 | . 2 ⊢ ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)) | 
| 46 | 44, 29, 45 | mpbir2an 711 | 1 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ⊆ wss 3951 {csn 4626 ↾ cres 5687 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 + caddc 11158 · cmul 11160 ℝ+crp 13034 expce 16097 Basecbs 17247 ↾s cress 17274 +gcplusg 17297 Grpcgrp 18951 SubGrpcsubg 19138 GrpHom cghm 19230 GrpIso cgim 19275 mulGrpcmgp 20137 Ringcrg 20230 SubRingcsubrg 20569 DivRingcdr 20729 ℂfldccnfld 21364 ℝfldcrefld 21622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-mulg 19086 df-subg 19141 df-ghm 19231 df-gim 19277 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-subrng 20546 df-subrg 20570 df-drng 20731 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-refld 21623 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-limc 25901 df-dv 25902 | 
| This theorem is referenced by: reloggim 26641 | 
| Copyright terms: Public domain | W3C validator |