![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrrext | Structured version Visualization version GIF version |
Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
cnrrext | ⊢ ℂfld ∈ ℝExt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 24648 | . . 3 ⊢ ℂfld ∈ NrmRing | |
2 | cndrng 21283 | . . 3 ⊢ ℂfld ∈ DivRing | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) |
4 | cnzh 33480 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmMod | |
5 | df-refld 21494 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
6 | 5 | fveq2i 6887 | . . . 4 ⊢ (chr‘ℝfld) = (chr‘(ℂfld ↾s ℝ)) |
7 | reofld 32962 | . . . . 5 ⊢ ℝfld ∈ oField | |
8 | ofldchr 32935 | . . . . 5 ⊢ (ℝfld ∈ oField → (chr‘ℝfld) = 0) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (chr‘ℝfld) = 0 |
10 | resubdrg 21497 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
11 | 10 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
12 | subrgchr 32888 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) → (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld) |
14 | 6, 9, 13 | 3eqtr3ri 2763 | . . 3 ⊢ (chr‘ℂfld) = 0 |
15 | 4, 14 | pm3.2i 470 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) |
16 | cnfldcusp 25236 | . . 3 ⊢ ℂfld ∈ CUnifSp | |
17 | eqid 2726 | . . . 4 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
18 | 17 | cnflduss 25235 | . . 3 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
19 | 16, 18 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))) |
20 | cnfldbas 21240 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
21 | cnmet 24639 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
22 | metf 24187 | . . . . . 6 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
23 | ffn 6710 | . . . . . 6 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
24 | 21, 22, 23 | mp2b 10 | . . . . 5 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
25 | fnresdm 6662 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
27 | cnfldds 21248 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
28 | 27 | reseq1i 5970 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
29 | 26, 28 | eqtr3i 2756 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
30 | eqid 2726 | . . 3 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
31 | 20, 29, 30 | isrrext 33510 | . 2 ⊢ (ℂfld ∈ ℝExt ↔ ((ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) ∧ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) ∧ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))))) |
32 | 3, 15, 19, 31 | mpbir3an 1338 | 1 ⊢ ℂfld ∈ ℝExt |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 × cxp 5667 ↾ cres 5671 ∘ ccom 5673 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 ℂcc 11107 ℝcr 11108 0cc0 11109 − cmin 11445 abscabs 15185 ↾s cress 17180 distcds 17213 SubRingcsubrg 20467 DivRingcdr 20585 Metcmet 21222 metUnifcmetu 21227 ℂfldccnfld 21236 ℤModczlm 21383 chrcchr 21384 ℝfldcrefld 21493 UnifStcuss 24109 CUnifSpccusp 24153 NrmRingcnrg 24439 NrmModcnlm 24440 oFieldcofld 32917 ℝExt crrext 33504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18258 df-poset 18276 df-plt 18293 df-toset 18380 df-ps 18529 df-tsr 18530 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19048 df-cntz 19231 df-od 19446 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20234 df-dvdsr 20257 df-unit 20258 df-invr 20288 df-dvr 20301 df-subrng 20444 df-subrg 20469 df-drng 20587 df-field 20588 df-abv 20658 df-lmod 20706 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-fbas 21233 df-fg 21234 df-metu 21235 df-cnfld 21237 df-zring 21330 df-zlm 21387 df-chr 21388 df-refld 21494 df-top 22747 df-topon 22764 df-topsp 22786 df-bases 22800 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-cn 23082 df-cnp 23083 df-haus 23170 df-cmp 23242 df-tx 23417 df-hmeo 23610 df-fil 23701 df-flim 23794 df-fcls 23796 df-ust 24056 df-utop 24087 df-uss 24112 df-usp 24113 df-cfilu 24143 df-cusp 24154 df-xms 24177 df-ms 24178 df-tms 24179 df-nm 24442 df-ngp 24443 df-nrg 24445 df-nlm 24446 df-cncf 24749 df-cfil 25134 df-cmet 25136 df-cms 25214 df-omnd 32721 df-ogrp 32722 df-orng 32918 df-ofld 32919 df-rrext 33509 |
This theorem is referenced by: sitgclcn 33873 |
Copyright terms: Public domain | W3C validator |