Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrrext Structured version   Visualization version   GIF version

Theorem cnrrext 33970
Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
cnrrext fld ∈ ℝExt

Proof of Theorem cnrrext
StepHypRef Expression
1 cnnrg 24737 . . 3 fld ∈ NrmRing
2 cndrng 21373 . . 3 fld ∈ DivRing
31, 2pm3.2i 470 . 2 (ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing)
4 cnzh 33928 . . 3 (ℤMod‘ℂfld) ∈ NrmMod
5 df-refld 21577 . . . . 5 fld = (ℂflds ℝ)
65fveq2i 6889 . . . 4 (chr‘ℝfld) = (chr‘(ℂflds ℝ))
7 reofld 33307 . . . . 5 fld ∈ oField
8 ofldchr 33284 . . . . 5 (ℝfld ∈ oField → (chr‘ℝfld) = 0)
97, 8ax-mp 5 . . . 4 (chr‘ℝfld) = 0
10 resubdrg 21580 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
1110simpli 483 . . . . 5 ℝ ∈ (SubRing‘ℂfld)
12 subrgchr 33180 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) → (chr‘(ℂflds ℝ)) = (chr‘ℂfld))
1311, 12ax-mp 5 . . . 4 (chr‘(ℂflds ℝ)) = (chr‘ℂfld)
146, 9, 133eqtr3ri 2766 . . 3 (chr‘ℂfld) = 0
154, 14pm3.2i 470 . 2 ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0)
16 cnfldcusp 25327 . . 3 fld ∈ CUnifSp
17 eqid 2734 . . . 4 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
1817cnflduss 25326 . . 3 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
1916, 18pm3.2i 470 . 2 (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )))
20 cnfldbas 21330 . . 3 ℂ = (Base‘ℂfld)
21 cnmet 24728 . . . . . 6 (abs ∘ − ) ∈ (Met‘ℂ)
22 metf 24285 . . . . . 6 ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
23 ffn 6716 . . . . . 6 ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ))
2421, 22, 23mp2b 10 . . . . 5 (abs ∘ − ) Fn (ℂ × ℂ)
25 fnresdm 6667 . . . . 5 ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ))
2624, 25ax-mp 5 . . . 4 ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )
27 cnfldds 21338 . . . . 5 (abs ∘ − ) = (dist‘ℂfld)
2827reseq1i 5973 . . . 4 ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ))
2926, 28eqtr3i 2759 . . 3 (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ))
30 eqid 2734 . . 3 (ℤMod‘ℂfld) = (ℤMod‘ℂfld)
3120, 29, 30isrrext 33960 . 2 (ℂfld ∈ ℝExt ↔ ((ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) ∧ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) ∧ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )))))
323, 15, 19, 31mpbir3an 1341 1 fld ∈ ℝExt
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107   × cxp 5663  cres 5667  ccom 5669   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  cmin 11474  abscabs 15255  s cress 17252  distcds 17282  SubRingcsubrg 20537  DivRingcdr 20697  Metcmet 21312  metUnifcmetu 21317  fldccnfld 21326  ℤModczlm 21473  chrcchr 21474  fldcrefld 21576  UnifStcuss 24208  CUnifSpccusp 24251  NrmRingcnrg 24536  NrmModcnlm 24537  oFieldcofld 33266   ℝExt crrext 33954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-proset 18310  df-poset 18329  df-plt 18344  df-toset 18431  df-ps 18580  df-tsr 18581  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-cntz 19304  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-subrng 20514  df-subrg 20538  df-drng 20699  df-field 20700  df-abv 20778  df-lmod 20828  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-metu 21325  df-cnfld 21327  df-zring 21420  df-zlm 21477  df-chr 21478  df-refld 21577  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-cn 23181  df-cnp 23182  df-haus 23269  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-fil 23800  df-flim 23893  df-fcls 23895  df-ust 24155  df-utop 24186  df-uss 24211  df-usp 24212  df-cfilu 24241  df-cusp 24252  df-xms 24275  df-ms 24276  df-tms 24277  df-nm 24539  df-ngp 24540  df-nrg 24542  df-nlm 24543  df-cncf 24840  df-cfil 25225  df-cmet 25227  df-cms 25305  df-omnd 33015  df-ogrp 33016  df-orng 33267  df-ofld 33268  df-rrext 33959
This theorem is referenced by:  sitgclcn  34305
  Copyright terms: Public domain W3C validator