| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrrext | Structured version Visualization version GIF version | ||
| Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| cnrrext | ⊢ ℂfld ∈ ℝExt |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24702 | . . 3 ⊢ ℂfld ∈ NrmRing | |
| 2 | cndrng 21341 | . . 3 ⊢ ℂfld ∈ DivRing | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) |
| 4 | cnzh 33952 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmMod | |
| 5 | df-refld 21548 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 6 | 5 | fveq2i 6843 | . . . 4 ⊢ (chr‘ℝfld) = (chr‘(ℂfld ↾s ℝ)) |
| 7 | reofld 33309 | . . . . 5 ⊢ ℝfld ∈ oField | |
| 8 | ofldchr 21519 | . . . . 5 ⊢ (ℝfld ∈ oField → (chr‘ℝfld) = 0) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (chr‘ℝfld) = 0 |
| 10 | resubdrg 21551 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 11 | 10 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 12 | subrgchr 33205 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) → (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld)) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld) |
| 14 | 6, 9, 13 | 3eqtr3ri 2761 | . . 3 ⊢ (chr‘ℂfld) = 0 |
| 15 | 4, 14 | pm3.2i 470 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) |
| 16 | cnfldcusp 25291 | . . 3 ⊢ ℂfld ∈ CUnifSp | |
| 17 | eqid 2729 | . . . 4 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
| 18 | 17 | cnflduss 25290 | . . 3 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
| 19 | 16, 18 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))) |
| 20 | cnfldbas 21301 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 21 | cnmet 24693 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 22 | metf 24252 | . . . . . 6 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 23 | ffn 6670 | . . . . . 6 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
| 24 | 21, 22, 23 | mp2b 10 | . . . . 5 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
| 25 | fnresdm 6619 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
| 26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
| 27 | cnfldds 21309 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
| 28 | 27 | reseq1i 5935 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
| 29 | 26, 28 | eqtr3i 2754 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
| 30 | eqid 2729 | . . 3 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
| 31 | 20, 29, 30 | isrrext 33984 | . 2 ⊢ (ℂfld ∈ ℝExt ↔ ((ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) ∧ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) ∧ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))))) |
| 32 | 3, 15, 19, 31 | mpbir3an 1342 | 1 ⊢ ℂfld ∈ ℝExt |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5629 ↾ cres 5633 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 ℝcr 11045 0cc0 11046 − cmin 11383 abscabs 15177 ↾s cress 17177 distcds 17206 SubRingcsubrg 20490 DivRingcdr 20650 oFieldcofld 20779 Metcmet 21283 metUnifcmetu 21288 ℂfldccnfld 21297 ℤModczlm 21443 chrcchr 21444 ℝfldcrefld 21547 UnifStcuss 24175 CUnifSpccusp 24218 NrmRingcnrg 24501 NrmModcnlm 24502 ℝExt crrext 33978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 ax-mulf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-proset 18236 df-poset 18255 df-plt 18270 df-toset 18357 df-ps 18508 df-tsr 18509 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-cntz 19232 df-od 19443 df-cmn 19697 df-abl 19698 df-omnd 20036 df-ogrp 20037 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-cring 20157 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-dvr 20322 df-subrng 20467 df-subrg 20491 df-drng 20652 df-field 20653 df-abv 20730 df-orng 20780 df-ofld 20781 df-lmod 20801 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-metu 21296 df-cnfld 21298 df-zring 21390 df-zlm 21447 df-chr 21448 df-refld 21548 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-cn 23148 df-cnp 23149 df-haus 23236 df-cmp 23308 df-tx 23483 df-hmeo 23676 df-fil 23767 df-flim 23860 df-fcls 23862 df-ust 24122 df-utop 24153 df-uss 24178 df-usp 24179 df-cfilu 24208 df-cusp 24219 df-xms 24242 df-ms 24243 df-tms 24244 df-nm 24504 df-ngp 24505 df-nrg 24507 df-nlm 24508 df-cncf 24805 df-cfil 25189 df-cmet 25191 df-cms 25269 df-rrext 33983 |
| This theorem is referenced by: sitgclcn 34329 |
| Copyright terms: Public domain | W3C validator |