| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrrext | Structured version Visualization version GIF version | ||
| Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| cnrrext | ⊢ ℂfld ∈ ℝExt |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24705 | . . 3 ⊢ ℂfld ∈ NrmRing | |
| 2 | cndrng 21345 | . . 3 ⊢ ℂfld ∈ DivRing | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) |
| 4 | cnzh 33992 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmMod | |
| 5 | df-refld 21552 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 6 | 5 | fveq2i 6834 | . . . 4 ⊢ (chr‘ℝfld) = (chr‘(ℂfld ↾s ℝ)) |
| 7 | reofld 33319 | . . . . 5 ⊢ ℝfld ∈ oField | |
| 8 | ofldchr 21523 | . . . . 5 ⊢ (ℝfld ∈ oField → (chr‘ℝfld) = 0) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (chr‘ℝfld) = 0 |
| 10 | resubdrg 21555 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 11 | 10 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 12 | subrgchr 33215 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) → (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld)) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld) |
| 14 | 6, 9, 13 | 3eqtr3ri 2765 | . . 3 ⊢ (chr‘ℂfld) = 0 |
| 15 | 4, 14 | pm3.2i 470 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) |
| 16 | cnfldcusp 25294 | . . 3 ⊢ ℂfld ∈ CUnifSp | |
| 17 | eqid 2733 | . . . 4 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
| 18 | 17 | cnflduss 25293 | . . 3 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
| 19 | 16, 18 | pm3.2i 470 | . 2 ⊢ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))) |
| 20 | cnfldbas 21305 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 21 | cnmet 24696 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 22 | metf 24255 | . . . . . 6 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 23 | ffn 6659 | . . . . . 6 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
| 24 | 21, 22, 23 | mp2b 10 | . . . . 5 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
| 25 | fnresdm 6608 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
| 26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
| 27 | cnfldds 21313 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
| 28 | 27 | reseq1i 5931 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
| 29 | 26, 28 | eqtr3i 2758 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
| 30 | eqid 2733 | . . 3 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
| 31 | 20, 29, 30 | isrrext 34024 | . 2 ⊢ (ℂfld ∈ ℝExt ↔ ((ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) ∧ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) ∧ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))))) |
| 32 | 3, 15, 19, 31 | mpbir3an 1342 | 1 ⊢ ℂfld ∈ ℝExt |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 × cxp 5619 ↾ cres 5623 ∘ ccom 5625 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 ℝcr 11015 0cc0 11016 − cmin 11354 abscabs 15151 ↾s cress 17151 distcds 17180 SubRingcsubrg 20494 DivRingcdr 20654 oFieldcofld 20783 Metcmet 21287 metUnifcmetu 21292 ℂfldccnfld 21301 ℤModczlm 21447 chrcchr 21448 ℝfldcrefld 21551 UnifStcuss 24178 CUnifSpccusp 24221 NrmRingcnrg 24504 NrmModcnlm 24505 ℝExt crrext 34018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-xrs 17416 df-qtop 17421 df-imas 17422 df-xps 17424 df-mre 17498 df-mrc 17499 df-acs 17501 df-proset 18210 df-poset 18229 df-plt 18244 df-toset 18331 df-ps 18482 df-tsr 18483 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-cntz 19239 df-od 19450 df-cmn 19704 df-abl 19705 df-omnd 20043 df-ogrp 20044 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-subrng 20471 df-subrg 20495 df-drng 20656 df-field 20657 df-abv 20734 df-orng 20784 df-ofld 20785 df-lmod 20805 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-metu 21300 df-cnfld 21302 df-zring 21394 df-zlm 21451 df-chr 21452 df-refld 21552 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-cn 23152 df-cnp 23153 df-haus 23240 df-cmp 23312 df-tx 23487 df-hmeo 23680 df-fil 23771 df-flim 23864 df-fcls 23866 df-ust 24126 df-utop 24156 df-uss 24181 df-usp 24182 df-cfilu 24211 df-cusp 24222 df-xms 24245 df-ms 24246 df-tms 24247 df-nm 24507 df-ngp 24508 df-nrg 24510 df-nlm 24511 df-cncf 24808 df-cfil 25192 df-cmet 25194 df-cms 25272 df-rrext 34023 |
| This theorem is referenced by: sitgclcn 34368 |
| Copyright terms: Public domain | W3C validator |