![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrrext | Structured version Visualization version GIF version |
Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
cnrrext | ⊢ ℂfld ∈ ℝExt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 23107 | . . 3 ⊢ ℂfld ∈ NrmRing | |
2 | cndrng 20291 | . . 3 ⊢ ℂfld ∈ DivRing | |
3 | 1, 2 | pm3.2i 463 | . 2 ⊢ (ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) |
4 | cnzh 30887 | . . 3 ⊢ (ℤMod‘ℂfld) ∈ NrmMod | |
5 | df-refld 20466 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
6 | 5 | fveq2i 6507 | . . . 4 ⊢ (chr‘ℝfld) = (chr‘(ℂfld ↾s ℝ)) |
7 | reofld 30624 | . . . . 5 ⊢ ℝfld ∈ oField | |
8 | ofldchr 30598 | . . . . 5 ⊢ (ℝfld ∈ oField → (chr‘ℝfld) = 0) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (chr‘ℝfld) = 0 |
10 | resubdrg 20469 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
11 | 10 | simpli 476 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
12 | subrgchr 30576 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) → (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld)) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (chr‘(ℂfld ↾s ℝ)) = (chr‘ℂfld) |
14 | 6, 9, 13 | 3eqtr3ri 2813 | . . 3 ⊢ (chr‘ℂfld) = 0 |
15 | 4, 14 | pm3.2i 463 | . 2 ⊢ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) |
16 | cnfldcusp 23678 | . . 3 ⊢ ℂfld ∈ CUnifSp | |
17 | eqid 2780 | . . . 4 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
18 | 17 | cnflduss 23677 | . . 3 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
19 | 16, 18 | pm3.2i 463 | . 2 ⊢ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))) |
20 | cnfldbas 20266 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
21 | cnmet 23098 | . . . . . 6 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
22 | metf 22658 | . . . . . 6 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
23 | ffn 6349 | . . . . . 6 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
24 | 21, 22, 23 | mp2b 10 | . . . . 5 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
25 | fnresdm 6304 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
27 | cnfldds 20272 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
28 | 27 | reseq1i 5696 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
29 | 26, 28 | eqtr3i 2806 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
30 | eqid 2780 | . . 3 ⊢ (ℤMod‘ℂfld) = (ℤMod‘ℂfld) | |
31 | 20, 29, 30 | isrrext 30917 | . 2 ⊢ (ℂfld ∈ ℝExt ↔ ((ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing) ∧ ((ℤMod‘ℂfld) ∈ NrmMod ∧ (chr‘ℂfld) = 0) ∧ (ℂfld ∈ CUnifSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))))) |
32 | 3, 15, 19, 31 | mpbir3an 1322 | 1 ⊢ ℂfld ∈ ℝExt |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1508 ∈ wcel 2051 × cxp 5409 ↾ cres 5413 ∘ ccom 5415 Fn wfn 6188 ⟶wf 6189 ‘cfv 6193 (class class class)co 6982 ℂcc 10339 ℝcr 10340 0cc0 10341 − cmin 10676 abscabs 14460 ↾s cress 16346 distcds 16436 DivRingcdr 19237 SubRingcsubrg 19266 Metcmet 20248 metUnifcmetu 20253 ℂfldccnfld 20262 ℤModczlm 20365 chrcchr 20366 ℝfldcrefld 20465 UnifStcuss 22580 CUnifSpccusp 22624 NrmRingcnrg 22907 NrmModcnlm 22908 oFieldcofld 30580 ℝExt crrext 30911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 ax-addf 10420 ax-mulf 10421 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-iin 4800 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-of 7233 df-om 7403 df-1st 7507 df-2nd 7508 df-supp 7640 df-tpos 7701 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-2o 7912 df-oadd 7915 df-er 8095 df-map 8214 df-ixp 8266 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-fsupp 8635 df-fi 8676 df-sup 8707 df-inf 8708 df-oi 8775 df-card 9168 df-cda 9394 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-q 12169 df-rp 12211 df-xneg 12330 df-xadd 12331 df-xmul 12332 df-ioo 12564 df-ico 12566 df-icc 12567 df-fz 12715 df-fzo 12856 df-seq 13191 df-exp 13251 df-hash 13512 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-starv 16442 df-sca 16443 df-vsca 16444 df-ip 16445 df-tset 16446 df-ple 16447 df-ds 16449 df-unif 16450 df-hom 16451 df-cco 16452 df-rest 16558 df-topn 16559 df-0g 16577 df-gsum 16578 df-topgen 16579 df-pt 16580 df-prds 16583 df-xrs 16637 df-qtop 16642 df-imas 16643 df-xps 16645 df-mre 16727 df-mrc 16728 df-acs 16730 df-proset 17408 df-poset 17426 df-plt 17438 df-toset 17514 df-ps 17680 df-tsr 17681 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-cntz 18230 df-od 18430 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-cring 19035 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-drng 19239 df-field 19240 df-subrg 19268 df-abv 19322 df-lmod 19370 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-fbas 20259 df-fg 20260 df-metu 20261 df-cnfld 20263 df-zring 20335 df-zlm 20369 df-chr 20370 df-refld 20466 df-top 21221 df-topon 21238 df-topsp 21260 df-bases 21273 df-cld 21346 df-ntr 21347 df-cls 21348 df-nei 21425 df-cn 21554 df-cnp 21555 df-haus 21642 df-cmp 21714 df-tx 21889 df-hmeo 22082 df-fil 22173 df-flim 22266 df-fcls 22268 df-ust 22527 df-utop 22558 df-uss 22583 df-usp 22584 df-cfilu 22614 df-cusp 22625 df-xms 22648 df-ms 22649 df-tms 22650 df-nm 22910 df-ngp 22911 df-nrg 22913 df-nlm 22914 df-cncf 23204 df-cfil 23576 df-cmet 23578 df-cms 23656 df-omnd 30444 df-ogrp 30445 df-orng 30581 df-ofld 30582 df-rrext 30916 |
This theorem is referenced by: sitgclcn 31279 |
Copyright terms: Public domain | W3C validator |