Step | Hyp | Ref
| Expression |
1 | | ccfldextrr 31234 |
. . 3
⊢
ℂfld/FldExtℝfld |
2 | | extdgval 31240 |
. . 3
⊢
(ℂfld/FldExtℝfld →
(ℂfld[:]ℝfld) = (dim‘((subringAlg
‘ℂfld)‘(Base‘ℝfld)))) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢
(ℂfld[:]ℝfld) =
(dim‘((subringAlg
‘ℂfld)‘(Base‘ℝfld))) |
4 | | rebase 20361 |
. . . 4
⊢ ℝ =
(Base‘ℝfld) |
5 | 4 | fveq2i 6659 |
. . 3
⊢
((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg
‘ℂfld)‘(Base‘ℝfld)) |
6 | 5 | fveq2i 6659 |
. 2
⊢
(dim‘((subringAlg ‘ℂfld)‘ℝ)) =
(dim‘((subringAlg
‘ℂfld)‘(Base‘ℝfld))) |
7 | | ccfldsrarelvec 31252 |
. . . 4
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
LVec |
8 | | df-pr 4523 |
. . . . . 6
⊢ {1, i} =
({1} ∪ {i}) |
9 | | eqid 2759 |
. . . . . . . 8
⊢
(LSpan‘((subringAlg ‘ℂfld)‘ℝ))
= (LSpan‘((subringAlg
‘ℂfld)‘ℝ)) |
10 | | eqidd 2760 |
. . . . . . . . . 10
⊢ (⊤
→ ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg
‘ℂfld)‘ℝ)) |
11 | | cnfld0 20180 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘ℂfld) |
12 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 0 = (0g‘ℂfld)) |
13 | | ax-resscn 10622 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ |
14 | | cnfldbas 20160 |
. . . . . . . . . . . 12
⊢ ℂ =
(Base‘ℂfld) |
15 | 13, 14 | sseqtri 3929 |
. . . . . . . . . . 11
⊢ ℝ
⊆ (Base‘ℂfld) |
16 | 15 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ ℝ ⊆ (Base‘ℂfld)) |
17 | 10, 12, 16 | sralmod0 20018 |
. . . . . . . . 9
⊢ (⊤
→ 0 = (0g‘((subringAlg
‘ℂfld)‘ℝ))) |
18 | 17 | mptru 1546 |
. . . . . . . 8
⊢ 0 =
(0g‘((subringAlg
‘ℂfld)‘ℝ)) |
19 | 7 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ ((subringAlg ‘ℂfld)‘ℝ) ∈
LVec) |
20 | | ax-1cn 10623 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
21 | | ax-1ne0 10634 |
. . . . . . . . . 10
⊢ 1 ≠
0 |
22 | 10, 16 | srabase 20008 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (Base‘ℂfld) = (Base‘((subringAlg
‘ℂfld)‘ℝ))) |
23 | 22 | mptru 1546 |
. . . . . . . . . . . 12
⊢
(Base‘ℂfld) = (Base‘((subringAlg
‘ℂfld)‘ℝ)) |
24 | 14, 23 | eqtri 2782 |
. . . . . . . . . . 11
⊢ ℂ =
(Base‘((subringAlg
‘ℂfld)‘ℝ)) |
25 | 24, 18 | lindssn 31084 |
. . . . . . . . . 10
⊢
((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
∧ 1 ∈ ℂ ∧ 1 ≠ 0) → {1} ∈
(LIndS‘((subringAlg
‘ℂfld)‘ℝ))) |
26 | 7, 20, 21, 25 | mp3an 1459 |
. . . . . . . . 9
⊢ {1}
∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ)) |
27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ {1} ∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ))) |
28 | | ax-icn 10624 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
29 | | ine0 11103 |
. . . . . . . . . 10
⊢ i ≠
0 |
30 | 24, 18 | lindssn 31084 |
. . . . . . . . . 10
⊢
((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
∧ i ∈ ℂ ∧ i ≠ 0) → {i} ∈
(LIndS‘((subringAlg
‘ℂfld)‘ℝ))) |
31 | 7, 28, 29, 30 | mp3an 1459 |
. . . . . . . . 9
⊢ {i}
∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ)) |
32 | 31 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ {i} ∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ))) |
33 | | lveclmod 19936 |
. . . . . . . . . . . . . . 15
⊢
(((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
→ ((subringAlg ‘ℂfld)‘ℝ) ∈
LMod) |
34 | 7, 33 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
LMod |
35 | | df-refld 20360 |
. . . . . . . . . . . . . . . 16
⊢
ℝfld = (ℂfld ↾s
ℝ) |
36 | 10, 16 | srasca 20011 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (ℂfld ↾s ℝ) =
(Scalar‘((subringAlg
‘ℂfld)‘ℝ))) |
37 | 36 | mptru 1546 |
. . . . . . . . . . . . . . . 16
⊢
(ℂfld ↾s ℝ) =
(Scalar‘((subringAlg
‘ℂfld)‘ℝ)) |
38 | 35, 37 | eqtri 2782 |
. . . . . . . . . . . . . . 15
⊢
ℝfld = (Scalar‘((subringAlg
‘ℂfld)‘ℝ)) |
39 | | cnfldmul 20162 |
. . . . . . . . . . . . . . . 16
⊢ ·
= (.r‘ℂfld) |
40 | 10, 16 | sravsca 20012 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (.r‘ℂfld) = (
·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ))) |
41 | 40 | mptru 1546 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘ℂfld) = (
·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ)) |
42 | 39, 41 | eqtri 2782 |
. . . . . . . . . . . . . . 15
⊢ ·
= ( ·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ)) |
43 | 38, 4, 24, 42, 9 | lspsnel 19833 |
. . . . . . . . . . . . . 14
⊢
((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
∧ 1 ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1))) |
44 | 34, 20, 43 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1)) |
45 | 38, 4, 24, 42, 9 | lspsnel 19833 |
. . . . . . . . . . . . . 14
⊢
((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
∧ i ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i))) |
46 | 34, 28, 45 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)) |
47 | 44, 46 | anbi12i 630 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i})) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i))) |
48 | | reeanv 3286 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i))) |
49 | | simprl 771 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑥 · 1)) |
50 | | simpll 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℝ) |
51 | 50 | recnd 10697 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℂ) |
52 | 51 | mulid1d 10686 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑥 · 1) = 𝑥) |
53 | 49, 52 | eqtrd 2794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 𝑥) |
54 | 53 | negeqd 10908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑧 = -𝑥) |
55 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑦 · i)) |
56 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℝ) |
57 | 56 | recnd 10697 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℂ) |
58 | 28 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → i ∈
ℂ) |
59 | 57, 58 | mulcomd 10690 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑦 · i) = (i · 𝑦)) |
60 | 55, 59 | eqtrd 2794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (i · 𝑦)) |
61 | 54, 60 | oveq12d 7166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = (-𝑥 + (i · 𝑦))) |
62 | 53, 51 | eqeltrd 2853 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 ∈ ℂ) |
63 | 62 | subidd 11013 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑧 − 𝑧) = 0) |
64 | 63 | negeqd 10908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧 − 𝑧) = -0) |
65 | 62, 62 | negsubdid 11040 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧 − 𝑧) = (-𝑧 + 𝑧)) |
66 | | neg0 10960 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ -0 =
0 |
67 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 =
0) |
68 | 64, 65, 67 | 3eqtr3d 2802 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = 0) |
69 | 61, 68 | eqtr3d 2796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 + (i · 𝑦)) = 0) |
70 | 50 | renegcld 11095 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 ∈ ℝ) |
71 | | creq0 30584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((-𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0)) |
72 | 70, 56, 71 | syl2anc 588 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0)) |
73 | 69, 72 | mpbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 = 0 ∧ 𝑦 = 0)) |
74 | 73 | simpld 499 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 = 0) |
75 | 51, 74 | negcon1ad 11020 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 = 𝑥) |
76 | 53, 75, 67 | 3eqtr2d 2800 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 0) |
77 | 76 | ex 417 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0)) |
78 | 77 | rexlimivv 3217 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0) |
79 | | 0red 10672 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 0 → 0 ∈
ℝ) |
80 | | simpr 489 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = 0 ∧ 𝑥 = 0) → 𝑥 = 0) |
81 | 80 | oveq1d 7163 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑥 · 1) = (0 ·
1)) |
82 | 81 | eqeq2d 2770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑧 = (𝑥 · 1) ↔ 𝑧 = (0 · 1))) |
83 | 82 | anbi1d 633 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 0 ∧ 𝑥 = 0) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)))) |
84 | 83 | rexbidv 3222 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 0 ∧ 𝑥 = 0) → (∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)))) |
85 | | simpr 489 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = 0 ∧ 𝑦 = 0) → 𝑦 = 0) |
86 | 85 | oveq1d 7163 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑦 · i) = (0 ·
i)) |
87 | 86 | eqeq2d 2770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑧 = (𝑦 · i) ↔ 𝑧 = (0 · i))) |
88 | 87 | anbi2d 632 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 0 ∧ 𝑦 = 0) → ((𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i)))) |
89 | 20 | mul02i 10857 |
. . . . . . . . . . . . . . . . . 18
⊢ (0
· 1) = 0 |
90 | 89 | eqeq2i 2772 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (0 · 1) ↔ 𝑧 = 0) |
91 | 90 | biimpri 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 0 → 𝑧 = (0 · 1)) |
92 | 28 | mul02i 10857 |
. . . . . . . . . . . . . . . . . 18
⊢ (0
· i) = 0 |
93 | 92 | eqeq2i 2772 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (0 · i) ↔ 𝑧 = 0) |
94 | 93 | biimpri 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 0 → 𝑧 = (0 · i)) |
95 | 91, 94 | jca 516 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 0 → (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i))) |
96 | 79, 88, 95 | rspcedvd 3545 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 0 → ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i))) |
97 | 79, 84, 96 | rspcedvd 3545 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 0 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) |
98 | 78, 97 | impbii 212 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ 𝑧 = 0) |
99 | 47, 48, 98 | 3bitr2i 303 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 = 0) |
100 | | elin 3875 |
. . . . . . . . . . 11
⊢ (𝑧 ∈
(((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ∩
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i})) ↔ (𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i}))) |
101 | | velsn 4536 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {0} ↔ 𝑧 = 0) |
102 | 99, 100, 101 | 3bitr4i 307 |
. . . . . . . . . 10
⊢ (𝑧 ∈
(((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ∩
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 ∈ {0}) |
103 | 102 | eqriv 2756 |
. . . . . . . . 9
⊢
(((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ∩
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i})) =
{0} |
104 | 103 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ (((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1}) ∩
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{i})) =
{0}) |
105 | 9, 18, 19, 27, 32, 104 | lindsun 31217 |
. . . . . . 7
⊢ (⊤
→ ({1} ∪ {i}) ∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ))) |
106 | 105 | mptru 1546 |
. . . . . 6
⊢ ({1}
∪ {i}) ∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ)) |
107 | 8, 106 | eqeltri 2849 |
. . . . 5
⊢ {1, i}
∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ)) |
108 | | cnfldadd 20161 |
. . . . . . . . . 10
⊢ + =
(+g‘ℂfld) |
109 | 10, 16 | sraaddg 20009 |
. . . . . . . . . . 11
⊢ (⊤
→ (+g‘ℂfld) =
(+g‘((subringAlg
‘ℂfld)‘ℝ))) |
110 | 109 | mptru 1546 |
. . . . . . . . . 10
⊢
(+g‘ℂfld) =
(+g‘((subringAlg
‘ℂfld)‘ℝ)) |
111 | 108, 110 | eqtri 2782 |
. . . . . . . . 9
⊢ + =
(+g‘((subringAlg
‘ℂfld)‘ℝ)) |
112 | 34 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ((subringAlg ‘ℂfld)‘ℝ) ∈
LMod) |
113 | | 1cnd 10664 |
. . . . . . . . 9
⊢ (⊤
→ 1 ∈ ℂ) |
114 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ i ∈ ℂ) |
115 | 24, 111, 38, 4, 42, 9, 112, 113, 114 | lspprel 19924 |
. . . . . . . 8
⊢ (⊤
→ (𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)))) |
116 | 115 | mptru 1546 |
. . . . . . 7
⊢ (𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i))) |
117 | | simpl 487 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℝ) |
118 | 117 | recnd 10697 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℂ) |
119 | | 1cnd 10664 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈
ℂ) |
120 | 118, 119 | mulcld 10689 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 1) ∈
ℂ) |
121 | | simpr 489 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
122 | 121 | recnd 10697 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℂ) |
123 | 28 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈
ℂ) |
124 | 122, 123 | mulcld 10689 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · i) ∈
ℂ) |
125 | 120, 124 | addcld 10688 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + (𝑦 · i)) ∈
ℂ) |
126 | | eleq1 2840 |
. . . . . . . . . 10
⊢ (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → (𝑧 ∈ ℂ ↔ ((𝑥 · 1) + (𝑦 · i)) ∈
ℂ)) |
127 | 125, 126 | syl5ibrcom 250 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈ ℂ)) |
128 | 127 | rexlimivv 3217 |
. . . . . . . 8
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈
ℂ) |
129 | | recl 14507 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ →
(ℜ‘𝑧) ∈
ℝ) |
130 | | simpr 489 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → 𝑥 = (ℜ‘𝑧)) |
131 | 130 | oveq1d 7163 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑥 · 1) = ((ℜ‘𝑧) · 1)) |
132 | 131 | oveq1d 7163 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → ((𝑥 · 1) + (𝑦 · i)) = (((ℜ‘𝑧) · 1) + (𝑦 · i))) |
133 | 132 | eqeq2d 2770 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)))) |
134 | 133 | rexbidv 3222 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)))) |
135 | | imcl 14508 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℂ →
(ℑ‘𝑧) ∈
ℝ) |
136 | | simpr 489 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → 𝑦 = (ℑ‘𝑧)) |
137 | 136 | oveq1d 7163 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑦 · i) = ((ℑ‘𝑧) · i)) |
138 | 137 | oveq2d 7164 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (((ℜ‘𝑧) · 1) + (𝑦 · i)) =
(((ℜ‘𝑧) ·
1) + ((ℑ‘𝑧)
· i))) |
139 | 138 | eqeq2d 2770 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) ·
i)))) |
140 | | replim 14513 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i ·
(ℑ‘𝑧)))) |
141 | 129 | recnd 10697 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℂ →
(ℜ‘𝑧) ∈
ℂ) |
142 | 141 | mulid1d 10686 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℂ →
((ℜ‘𝑧) ·
1) = (ℜ‘𝑧)) |
143 | 135 | recnd 10697 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℂ →
(ℑ‘𝑧) ∈
ℂ) |
144 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℂ → i ∈
ℂ) |
145 | 143, 144 | mulcomd 10690 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℂ →
((ℑ‘𝑧) ·
i) = (i · (ℑ‘𝑧))) |
146 | 142, 145 | oveq12d 7166 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ →
(((ℜ‘𝑧) ·
1) + ((ℑ‘𝑧)
· i)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧)))) |
147 | 140, 146 | eqtr4d 2797 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℂ → 𝑧 = (((ℜ‘𝑧) · 1) +
((ℑ‘𝑧) ·
i))) |
148 | 135, 139,
147 | rspcedvd 3545 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ →
∃𝑦 ∈ ℝ
𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i))) |
149 | 129, 134,
148 | rspcedvd 3545 |
. . . . . . . 8
⊢ (𝑧 ∈ ℂ →
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝑧 = ((𝑥 · 1) + (𝑦 · i))) |
150 | 128, 149 | impbii 212 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 ∈
ℂ) |
151 | 116, 150 | bitri 278 |
. . . . . 6
⊢ (𝑧 ∈
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1, i}) ↔ 𝑧 ∈
ℂ) |
152 | 151 | eqriv 2756 |
. . . . 5
⊢
((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1, i}) =
ℂ |
153 | | eqid 2759 |
. . . . . 6
⊢
(LBasis‘((subringAlg ‘ℂfld)‘ℝ))
= (LBasis‘((subringAlg
‘ℂfld)‘ℝ)) |
154 | 24, 153, 9 | islbs4 20587 |
. . . . 5
⊢ ({1, i}
∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ))
↔ ({1, i} ∈ (LIndS‘((subringAlg
‘ℂfld)‘ℝ)) ∧ ((LSpan‘((subringAlg
‘ℂfld)‘ℝ))‘{1, i}) =
ℂ)) |
155 | 107, 152,
154 | mpbir2an 711 |
. . . 4
⊢ {1, i}
∈ (LBasis‘((subringAlg
‘ℂfld)‘ℝ)) |
156 | 153 | dimval 31197 |
. . . 4
⊢
((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
∧ {1, i} ∈ (LBasis‘((subringAlg
‘ℂfld)‘ℝ))) → (dim‘((subringAlg
‘ℂfld)‘ℝ)) = (♯‘{1,
i})) |
157 | 7, 155, 156 | mp2an 692 |
. . 3
⊢
(dim‘((subringAlg ‘ℂfld)‘ℝ)) =
(♯‘{1, i}) |
158 | | 1nei 30585 |
. . . 4
⊢ 1 ≠
i |
159 | | hashprg 13796 |
. . . . 5
⊢ ((1
∈ ℂ ∧ i ∈ ℂ) → (1 ≠ i ↔
(♯‘{1, i}) = 2)) |
160 | 20, 28, 159 | mp2an 692 |
. . . 4
⊢ (1 ≠ i
↔ (♯‘{1, i}) = 2) |
161 | 158, 160 | mpbi 233 |
. . 3
⊢
(♯‘{1, i}) = 2 |
162 | 157, 161 | eqtri 2782 |
. 2
⊢
(dim‘((subringAlg ‘ℂfld)‘ℝ)) =
2 |
163 | 3, 6, 162 | 3eqtr2i 2788 |
1
⊢
(ℂfld[:]ℝfld) = 2 |