Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccfldextdgrr Structured version   Visualization version   GIF version

Theorem ccfldextdgrr 33696
Description: The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023.)
Assertion
Ref Expression
ccfldextdgrr (ℂfld[:]ℝfld) = 2

Proof of Theorem ccfldextdgrr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ccfldextrr 33670 . . 3 fld/FldExtfld
2 extdgval 33677 . . 3 (ℂfld/FldExtfld → (ℂfld[:]ℝfld) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld))))
31, 2ax-mp 5 . 2 (ℂfld[:]ℝfld) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld)))
4 rebase 21553 . . . 4 ℝ = (Base‘ℝfld)
54fveq2i 6834 . . 3 ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘(Base‘ℝfld))
65fveq2i 6834 . 2 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld)))
7 ccfldsrarelvec 33695 . . . 4 ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
8 df-pr 4580 . . . . . 6 {1, i} = ({1} ∪ {i})
9 eqid 2733 . . . . . . . 8 (LSpan‘((subringAlg ‘ℂfld)‘ℝ)) = (LSpan‘((subringAlg ‘ℂfld)‘ℝ))
10 eqidd 2734 . . . . . . . . . 10 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ))
11 cnfld0 21339 . . . . . . . . . . 11 0 = (0g‘ℂfld)
1211a1i 11 . . . . . . . . . 10 (⊤ → 0 = (0g‘ℂfld))
13 ax-resscn 11073 . . . . . . . . . . . 12 ℝ ⊆ ℂ
14 cnfldbas 21305 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
1513, 14sseqtri 3980 . . . . . . . . . . 11 ℝ ⊆ (Base‘ℂfld)
1615a1i 11 . . . . . . . . . 10 (⊤ → ℝ ⊆ (Base‘ℂfld))
1710, 12, 16sralmod0 21132 . . . . . . . . 9 (⊤ → 0 = (0g‘((subringAlg ‘ℂfld)‘ℝ)))
1817mptru 1548 . . . . . . . 8 0 = (0g‘((subringAlg ‘ℂfld)‘ℝ))
197a1i 11 . . . . . . . 8 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec)
20 ax-1cn 11074 . . . . . . . . . 10 1 ∈ ℂ
21 ax-1ne0 11085 . . . . . . . . . 10 1 ≠ 0
2210, 16srabase 21121 . . . . . . . . . . . . 13 (⊤ → (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ)))
2322mptru 1548 . . . . . . . . . . . 12 (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ))
2414, 23eqtri 2756 . . . . . . . . . . 11 ℂ = (Base‘((subringAlg ‘ℂfld)‘ℝ))
2524, 18lindssn 33354 . . . . . . . . . 10 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
267, 20, 21, 25mp3an 1463 . . . . . . . . 9 {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
2726a1i 11 . . . . . . . 8 (⊤ → {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
28 ax-icn 11075 . . . . . . . . . 10 i ∈ ℂ
29 ine0 11562 . . . . . . . . . 10 i ≠ 0
3024, 18lindssn 33354 . . . . . . . . . 10 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ i ∈ ℂ ∧ i ≠ 0) → {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
317, 28, 29, 30mp3an 1463 . . . . . . . . 9 {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
3231a1i 11 . . . . . . . 8 (⊤ → {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
33 lveclmod 21050 . . . . . . . . . . . . . . 15 (((subringAlg ‘ℂfld)‘ℝ) ∈ LVec → ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod)
347, 33ax-mp 5 . . . . . . . . . . . . . 14 ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
35 df-refld 21552 . . . . . . . . . . . . . . . 16 fld = (ℂflds ℝ)
3610, 16srasca 21124 . . . . . . . . . . . . . . . . 17 (⊤ → (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ)))
3736mptru 1548 . . . . . . . . . . . . . . . 16 (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
3835, 37eqtri 2756 . . . . . . . . . . . . . . 15 fld = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
39 cnfldmul 21309 . . . . . . . . . . . . . . . 16 · = (.r‘ℂfld)
4010, 16sravsca 21125 . . . . . . . . . . . . . . . . 17 (⊤ → (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ)))
4140mptru 1548 . . . . . . . . . . . . . . . 16 (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4239, 41eqtri 2756 . . . . . . . . . . . . . . 15 · = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4338, 4, 24, 42, 9ellspsn 20946 . . . . . . . . . . . . . 14 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ 1 ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1)))
4434, 20, 43mp2an 692 . . . . . . . . . . . . 13 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1))
4538, 4, 24, 42, 9ellspsn 20946 . . . . . . . . . . . . . 14 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ i ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
4634, 28, 45mp2an 692 . . . . . . . . . . . . 13 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i))
4744, 46anbi12i 628 . . . . . . . . . . . 12 ((𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
48 reeanv 3206 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
49 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑥 · 1))
50 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℝ)
5150recnd 11150 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℂ)
5251mulridd 11139 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑥 · 1) = 𝑥)
5349, 52eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 𝑥)
5453negeqd 11364 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑧 = -𝑥)
55 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑦 · i))
56 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℝ)
5756recnd 11150 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℂ)
5828a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → i ∈ ℂ)
5957, 58mulcomd 11143 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑦 · i) = (i · 𝑦))
6055, 59eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (i · 𝑦))
6154, 60oveq12d 7373 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = (-𝑥 + (i · 𝑦)))
6253, 51eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 ∈ ℂ)
6362subidd 11470 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑧𝑧) = 0)
6463negeqd 11364 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧𝑧) = -0)
6562, 62negsubdid 11497 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧𝑧) = (-𝑧 + 𝑧))
66 neg0 11417 . . . . . . . . . . . . . . . . . . . . . 22 -0 = 0
6766a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 = 0)
6864, 65, 673eqtr3d 2776 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = 0)
6961, 68eqtr3d 2770 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 + (i · 𝑦)) = 0)
7050renegcld 11554 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 ∈ ℝ)
71 creq0 32730 . . . . . . . . . . . . . . . . . . . 20 ((-𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0))
7270, 56, 71syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0))
7369, 72mpbird 257 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 = 0 ∧ 𝑦 = 0))
7473simpld 494 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 = 0)
7551, 74negcon1ad 11477 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 = 𝑥)
7653, 75, 673eqtr2d 2774 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 0)
7776ex 412 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0))
7877rexlimivv 3176 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0)
79 0red 11125 . . . . . . . . . . . . . 14 (𝑧 = 0 → 0 ∈ ℝ)
80 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 0 ∧ 𝑥 = 0) → 𝑥 = 0)
8180oveq1d 7370 . . . . . . . . . . . . . . . . 17 ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑥 · 1) = (0 · 1))
8281eqeq2d 2744 . . . . . . . . . . . . . . . 16 ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑧 = (𝑥 · 1) ↔ 𝑧 = (0 · 1)))
8382anbi1d 631 . . . . . . . . . . . . . . 15 ((𝑧 = 0 ∧ 𝑥 = 0) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i))))
8483rexbidv 3158 . . . . . . . . . . . . . 14 ((𝑧 = 0 ∧ 𝑥 = 0) → (∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i))))
85 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 0 ∧ 𝑦 = 0) → 𝑦 = 0)
8685oveq1d 7370 . . . . . . . . . . . . . . . . 17 ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑦 · i) = (0 · i))
8786eqeq2d 2744 . . . . . . . . . . . . . . . 16 ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑧 = (𝑦 · i) ↔ 𝑧 = (0 · i)))
8887anbi2d 630 . . . . . . . . . . . . . . 15 ((𝑧 = 0 ∧ 𝑦 = 0) → ((𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i))))
8920mul02i 11312 . . . . . . . . . . . . . . . . . 18 (0 · 1) = 0
9089eqeq2i 2746 . . . . . . . . . . . . . . . . 17 (𝑧 = (0 · 1) ↔ 𝑧 = 0)
9190biimpri 228 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 𝑧 = (0 · 1))
9228mul02i 11312 . . . . . . . . . . . . . . . . . 18 (0 · i) = 0
9392eqeq2i 2746 . . . . . . . . . . . . . . . . 17 (𝑧 = (0 · i) ↔ 𝑧 = 0)
9493biimpri 228 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 𝑧 = (0 · i))
9591, 94jca 511 . . . . . . . . . . . . . . 15 (𝑧 = 0 → (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i)))
9679, 88, 95rspcedvd 3576 . . . . . . . . . . . . . 14 (𝑧 = 0 → ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)))
9779, 84, 96rspcedvd 3576 . . . . . . . . . . . . 13 (𝑧 = 0 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)))
9878, 97impbii 209 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ 𝑧 = 0)
9947, 48, 983bitr2i 299 . . . . . . . . . . 11 ((𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 = 0)
100 elin 3915 . . . . . . . . . . 11 (𝑧 ∈ (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})))
101 velsn 4593 . . . . . . . . . . 11 (𝑧 ∈ {0} ↔ 𝑧 = 0)
10299, 100, 1013bitr4i 303 . . . . . . . . . 10 (𝑧 ∈ (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 ∈ {0})
103102eqriv 2730 . . . . . . . . 9 (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) = {0}
104103a1i 11 . . . . . . . 8 (⊤ → (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) = {0})
1059, 18, 19, 27, 32, 104lindsun 33649 . . . . . . 7 (⊤ → ({1} ∪ {i}) ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
106105mptru 1548 . . . . . 6 ({1} ∪ {i}) ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
1078, 106eqeltri 2829 . . . . 5 {1, i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
108 cnfldadd 21307 . . . . . . . . . 10 + = (+g‘ℂfld)
10910, 16sraaddg 21122 . . . . . . . . . . 11 (⊤ → (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ)))
110109mptru 1548 . . . . . . . . . 10 (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ))
111108, 110eqtri 2756 . . . . . . . . 9 + = (+g‘((subringAlg ‘ℂfld)‘ℝ))
11234a1i 11 . . . . . . . . 9 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod)
113 1cnd 11117 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
11428a1i 11 . . . . . . . . 9 (⊤ → i ∈ ℂ)
11524, 111, 38, 4, 42, 9, 112, 113, 114lspprel 21038 . . . . . . . 8 (⊤ → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i))))
116115mptru 1548 . . . . . . 7 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)))
117 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
118117recnd 11150 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
119 1cnd 11117 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
120118, 119mulcld 11142 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 1) ∈ ℂ)
121 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
122121recnd 11150 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
12328a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
124122, 123mulcld 11142 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · i) ∈ ℂ)
125120, 124addcld 11141 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + (𝑦 · i)) ∈ ℂ)
126 eleq1 2821 . . . . . . . . . 10 (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → (𝑧 ∈ ℂ ↔ ((𝑥 · 1) + (𝑦 · i)) ∈ ℂ))
127125, 126syl5ibrcom 247 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈ ℂ))
128127rexlimivv 3176 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈ ℂ)
129 recl 15027 . . . . . . . . 9 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
130 simpr 484 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → 𝑥 = (ℜ‘𝑧))
131130oveq1d 7370 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑥 · 1) = ((ℜ‘𝑧) · 1))
132131oveq1d 7370 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → ((𝑥 · 1) + (𝑦 · i)) = (((ℜ‘𝑧) · 1) + (𝑦 · i)))
133132eqeq2d 2744 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i))))
134133rexbidv 3158 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i))))
135 imcl 15028 . . . . . . . . . 10 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
136 simpr 484 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → 𝑦 = (ℑ‘𝑧))
137136oveq1d 7370 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑦 · i) = ((ℑ‘𝑧) · i))
138137oveq2d 7371 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (((ℜ‘𝑧) · 1) + (𝑦 · i)) = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)))
139138eqeq2d 2744 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i))))
140 replim 15033 . . . . . . . . . . 11 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
141129recnd 11150 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ)
142141mulridd 11139 . . . . . . . . . . . 12 (𝑧 ∈ ℂ → ((ℜ‘𝑧) · 1) = (ℜ‘𝑧))
143135recnd 11150 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ)
14428a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → i ∈ ℂ)
145143, 144mulcomd 11143 . . . . . . . . . . . 12 (𝑧 ∈ ℂ → ((ℑ‘𝑧) · i) = (i · (ℑ‘𝑧)))
146142, 145oveq12d 7373 . . . . . . . . . . 11 (𝑧 ∈ ℂ → (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
147140, 146eqtr4d 2771 . . . . . . . . . 10 (𝑧 ∈ ℂ → 𝑧 = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)))
148135, 139, 147rspcedvd 3576 . . . . . . . . 9 (𝑧 ∈ ℂ → ∃𝑦 ∈ ℝ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)))
149129, 134, 148rspcedvd 3576 . . . . . . . 8 (𝑧 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)))
150128, 149impbii 209 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 ∈ ℂ)
151116, 150bitri 275 . . . . . 6 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ 𝑧 ∈ ℂ)
152151eqriv 2730 . . . . 5 ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) = ℂ
153 eqid 2733 . . . . . 6 (LBasis‘((subringAlg ‘ℂfld)‘ℝ)) = (LBasis‘((subringAlg ‘ℂfld)‘ℝ))
15424, 153, 9islbs4 21779 . . . . 5 ({1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ)) ↔ ({1, i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)) ∧ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) = ℂ))
155107, 152, 154mpbir2an 711 . . . 4 {1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ))
156153dimval 33624 . . . 4 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ {1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ))) → (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (♯‘{1, i}))
1577, 155, 156mp2an 692 . . 3 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (♯‘{1, i})
158 1nei 32731 . . . 4 1 ≠ i
159 hashprg 14312 . . . . 5 ((1 ∈ ℂ ∧ i ∈ ℂ) → (1 ≠ i ↔ (♯‘{1, i}) = 2))
16020, 28, 159mp2an 692 . . . 4 (1 ≠ i ↔ (♯‘{1, i}) = 2)
161158, 160mpbi 230 . . 3 (♯‘{1, i}) = 2
162157, 161eqtri 2756 . 2 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = 2
1633, 6, 1623eqtr2i 2762 1 (ℂfld[:]ℝfld) = 2
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wne 2930  wrex 3058  cun 3897  cin 3898  wss 3899  {csn 4577  {cpr 4579   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017  ici 11018   + caddc 11019   · cmul 11021  cmin 11354  -cneg 11355  2c2 12190  chash 14247  cre 15014  cim 15015  Basecbs 17130  s cress 17151  +gcplusg 17171  .rcmulr 17172  Scalarcsca 17174   ·𝑠 cvsca 17175  0gc0g 17353  LModclmod 20803  LSpanclspn 20914  LBasisclbs 21018  LVecclvec 21046  subringAlg csra 21115  fldccnfld 21301  fldcrefld 21551  LIndSclinds 21752  dimcldim 33622  /FldExtcfldext 33662  [:]cextdg 33664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9488  ax-inf2 9541  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-oi 9406  df-r1 9667  df-rank 9668  df-dju 9804  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ocomp 17192  df-ds 17193  df-unif 17194  df-0g 17355  df-mre 17498  df-mrc 17499  df-mri 17500  df-acs 17501  df-proset 18210  df-drs 18211  df-poset 18229  df-ipo 18444  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19046  df-cntz 19239  df-lsm 19558  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-subrng 20471  df-subrg 20495  df-drng 20656  df-field 20657  df-lmod 20805  df-lss 20875  df-lsp 20915  df-lbs 21019  df-lvec 21047  df-sra 21117  df-cnfld 21302  df-refld 21552  df-lindf 21753  df-linds 21754  df-dim 33623  df-fldext 33665  df-extdg 33666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator