Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccfldextdgrr Structured version   Visualization version   GIF version

Theorem ccfldextdgrr 33682
Description: The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023.)
Assertion
Ref Expression
ccfldextdgrr (ℂfld[:]ℝfld) = 2

Proof of Theorem ccfldextdgrr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ccfldextrr 33661 . . 3 fld/FldExtfld
2 extdgval 33667 . . 3 (ℂfld/FldExtfld → (ℂfld[:]ℝfld) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld))))
31, 2ax-mp 5 . 2 (ℂfld[:]ℝfld) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld)))
4 rebase 21647 . . . 4 ℝ = (Base‘ℝfld)
54fveq2i 6923 . . 3 ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘(Base‘ℝfld))
65fveq2i 6923 . 2 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld)))
7 ccfldsrarelvec 33681 . . . 4 ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
8 df-pr 4651 . . . . . 6 {1, i} = ({1} ∪ {i})
9 eqid 2740 . . . . . . . 8 (LSpan‘((subringAlg ‘ℂfld)‘ℝ)) = (LSpan‘((subringAlg ‘ℂfld)‘ℝ))
10 eqidd 2741 . . . . . . . . . 10 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ))
11 cnfld0 21428 . . . . . . . . . . 11 0 = (0g‘ℂfld)
1211a1i 11 . . . . . . . . . 10 (⊤ → 0 = (0g‘ℂfld))
13 ax-resscn 11241 . . . . . . . . . . . 12 ℝ ⊆ ℂ
14 cnfldbas 21391 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
1513, 14sseqtri 4045 . . . . . . . . . . 11 ℝ ⊆ (Base‘ℂfld)
1615a1i 11 . . . . . . . . . 10 (⊤ → ℝ ⊆ (Base‘ℂfld))
1710, 12, 16sralmod0 21218 . . . . . . . . 9 (⊤ → 0 = (0g‘((subringAlg ‘ℂfld)‘ℝ)))
1817mptru 1544 . . . . . . . 8 0 = (0g‘((subringAlg ‘ℂfld)‘ℝ))
197a1i 11 . . . . . . . 8 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec)
20 ax-1cn 11242 . . . . . . . . . 10 1 ∈ ℂ
21 ax-1ne0 11253 . . . . . . . . . 10 1 ≠ 0
2210, 16srabase 21200 . . . . . . . . . . . . 13 (⊤ → (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ)))
2322mptru 1544 . . . . . . . . . . . 12 (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ))
2414, 23eqtri 2768 . . . . . . . . . . 11 ℂ = (Base‘((subringAlg ‘ℂfld)‘ℝ))
2524, 18lindssn 33371 . . . . . . . . . 10 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
267, 20, 21, 25mp3an 1461 . . . . . . . . 9 {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
2726a1i 11 . . . . . . . 8 (⊤ → {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
28 ax-icn 11243 . . . . . . . . . 10 i ∈ ℂ
29 ine0 11725 . . . . . . . . . 10 i ≠ 0
3024, 18lindssn 33371 . . . . . . . . . 10 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ i ∈ ℂ ∧ i ≠ 0) → {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
317, 28, 29, 30mp3an 1461 . . . . . . . . 9 {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
3231a1i 11 . . . . . . . 8 (⊤ → {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
33 lveclmod 21128 . . . . . . . . . . . . . . 15 (((subringAlg ‘ℂfld)‘ℝ) ∈ LVec → ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod)
347, 33ax-mp 5 . . . . . . . . . . . . . 14 ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
35 df-refld 21646 . . . . . . . . . . . . . . . 16 fld = (ℂflds ℝ)
3610, 16srasca 21206 . . . . . . . . . . . . . . . . 17 (⊤ → (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ)))
3736mptru 1544 . . . . . . . . . . . . . . . 16 (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
3835, 37eqtri 2768 . . . . . . . . . . . . . . 15 fld = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
39 cnfldmul 21395 . . . . . . . . . . . . . . . 16 · = (.r‘ℂfld)
4010, 16sravsca 21208 . . . . . . . . . . . . . . . . 17 (⊤ → (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ)))
4140mptru 1544 . . . . . . . . . . . . . . . 16 (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4239, 41eqtri 2768 . . . . . . . . . . . . . . 15 · = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4338, 4, 24, 42, 9ellspsn 21024 . . . . . . . . . . . . . 14 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ 1 ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1)))
4434, 20, 43mp2an 691 . . . . . . . . . . . . 13 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1))
4538, 4, 24, 42, 9ellspsn 21024 . . . . . . . . . . . . . 14 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ i ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
4634, 28, 45mp2an 691 . . . . . . . . . . . . 13 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i))
4744, 46anbi12i 627 . . . . . . . . . . . 12 ((𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
48 reeanv 3235 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
49 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑥 · 1))
50 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℝ)
5150recnd 11318 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℂ)
5251mulridd 11307 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑥 · 1) = 𝑥)
5349, 52eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 𝑥)
5453negeqd 11530 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑧 = -𝑥)
55 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑦 · i))
56 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℝ)
5756recnd 11318 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℂ)
5828a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → i ∈ ℂ)
5957, 58mulcomd 11311 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑦 · i) = (i · 𝑦))
6055, 59eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (i · 𝑦))
6154, 60oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = (-𝑥 + (i · 𝑦)))
6253, 51eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 ∈ ℂ)
6362subidd 11635 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑧𝑧) = 0)
6463negeqd 11530 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧𝑧) = -0)
6562, 62negsubdid 11662 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧𝑧) = (-𝑧 + 𝑧))
66 neg0 11582 . . . . . . . . . . . . . . . . . . . . . 22 -0 = 0
6766a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 = 0)
6864, 65, 673eqtr3d 2788 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = 0)
6961, 68eqtr3d 2782 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 + (i · 𝑦)) = 0)
7050renegcld 11717 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 ∈ ℝ)
71 creq0 32749 . . . . . . . . . . . . . . . . . . . 20 ((-𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0))
7270, 56, 71syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0))
7369, 72mpbird 257 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 = 0 ∧ 𝑦 = 0))
7473simpld 494 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 = 0)
7551, 74negcon1ad 11642 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 = 𝑥)
7653, 75, 673eqtr2d 2786 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 0)
7776ex 412 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0))
7877rexlimivv 3207 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0)
79 0red 11293 . . . . . . . . . . . . . 14 (𝑧 = 0 → 0 ∈ ℝ)
80 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 0 ∧ 𝑥 = 0) → 𝑥 = 0)
8180oveq1d 7463 . . . . . . . . . . . . . . . . 17 ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑥 · 1) = (0 · 1))
8281eqeq2d 2751 . . . . . . . . . . . . . . . 16 ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑧 = (𝑥 · 1) ↔ 𝑧 = (0 · 1)))
8382anbi1d 630 . . . . . . . . . . . . . . 15 ((𝑧 = 0 ∧ 𝑥 = 0) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i))))
8483rexbidv 3185 . . . . . . . . . . . . . 14 ((𝑧 = 0 ∧ 𝑥 = 0) → (∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i))))
85 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 0 ∧ 𝑦 = 0) → 𝑦 = 0)
8685oveq1d 7463 . . . . . . . . . . . . . . . . 17 ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑦 · i) = (0 · i))
8786eqeq2d 2751 . . . . . . . . . . . . . . . 16 ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑧 = (𝑦 · i) ↔ 𝑧 = (0 · i)))
8887anbi2d 629 . . . . . . . . . . . . . . 15 ((𝑧 = 0 ∧ 𝑦 = 0) → ((𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i))))
8920mul02i 11479 . . . . . . . . . . . . . . . . . 18 (0 · 1) = 0
9089eqeq2i 2753 . . . . . . . . . . . . . . . . 17 (𝑧 = (0 · 1) ↔ 𝑧 = 0)
9190biimpri 228 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 𝑧 = (0 · 1))
9228mul02i 11479 . . . . . . . . . . . . . . . . . 18 (0 · i) = 0
9392eqeq2i 2753 . . . . . . . . . . . . . . . . 17 (𝑧 = (0 · i) ↔ 𝑧 = 0)
9493biimpri 228 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 𝑧 = (0 · i))
9591, 94jca 511 . . . . . . . . . . . . . . 15 (𝑧 = 0 → (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i)))
9679, 88, 95rspcedvd 3637 . . . . . . . . . . . . . 14 (𝑧 = 0 → ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)))
9779, 84, 96rspcedvd 3637 . . . . . . . . . . . . 13 (𝑧 = 0 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)))
9878, 97impbii 209 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ 𝑧 = 0)
9947, 48, 983bitr2i 299 . . . . . . . . . . 11 ((𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 = 0)
100 elin 3992 . . . . . . . . . . 11 (𝑧 ∈ (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})))
101 velsn 4664 . . . . . . . . . . 11 (𝑧 ∈ {0} ↔ 𝑧 = 0)
10299, 100, 1013bitr4i 303 . . . . . . . . . 10 (𝑧 ∈ (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 ∈ {0})
103102eqriv 2737 . . . . . . . . 9 (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) = {0}
104103a1i 11 . . . . . . . 8 (⊤ → (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) = {0})
1059, 18, 19, 27, 32, 104lindsun 33638 . . . . . . 7 (⊤ → ({1} ∪ {i}) ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
106105mptru 1544 . . . . . 6 ({1} ∪ {i}) ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
1078, 106eqeltri 2840 . . . . 5 {1, i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
108 cnfldadd 21393 . . . . . . . . . 10 + = (+g‘ℂfld)
10910, 16sraaddg 21202 . . . . . . . . . . 11 (⊤ → (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ)))
110109mptru 1544 . . . . . . . . . 10 (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ))
111108, 110eqtri 2768 . . . . . . . . 9 + = (+g‘((subringAlg ‘ℂfld)‘ℝ))
11234a1i 11 . . . . . . . . 9 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod)
113 1cnd 11285 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
11428a1i 11 . . . . . . . . 9 (⊤ → i ∈ ℂ)
11524, 111, 38, 4, 42, 9, 112, 113, 114lspprel 21116 . . . . . . . 8 (⊤ → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i))))
116115mptru 1544 . . . . . . 7 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)))
117 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
118117recnd 11318 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
119 1cnd 11285 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
120118, 119mulcld 11310 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 1) ∈ ℂ)
121 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
122121recnd 11318 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
12328a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
124122, 123mulcld 11310 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · i) ∈ ℂ)
125120, 124addcld 11309 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + (𝑦 · i)) ∈ ℂ)
126 eleq1 2832 . . . . . . . . . 10 (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → (𝑧 ∈ ℂ ↔ ((𝑥 · 1) + (𝑦 · i)) ∈ ℂ))
127125, 126syl5ibrcom 247 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈ ℂ))
128127rexlimivv 3207 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈ ℂ)
129 recl 15159 . . . . . . . . 9 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
130 simpr 484 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → 𝑥 = (ℜ‘𝑧))
131130oveq1d 7463 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑥 · 1) = ((ℜ‘𝑧) · 1))
132131oveq1d 7463 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → ((𝑥 · 1) + (𝑦 · i)) = (((ℜ‘𝑧) · 1) + (𝑦 · i)))
133132eqeq2d 2751 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i))))
134133rexbidv 3185 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i))))
135 imcl 15160 . . . . . . . . . 10 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
136 simpr 484 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → 𝑦 = (ℑ‘𝑧))
137136oveq1d 7463 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑦 · i) = ((ℑ‘𝑧) · i))
138137oveq2d 7464 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (((ℜ‘𝑧) · 1) + (𝑦 · i)) = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)))
139138eqeq2d 2751 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i))))
140 replim 15165 . . . . . . . . . . 11 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
141129recnd 11318 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ)
142141mulridd 11307 . . . . . . . . . . . 12 (𝑧 ∈ ℂ → ((ℜ‘𝑧) · 1) = (ℜ‘𝑧))
143135recnd 11318 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ)
14428a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → i ∈ ℂ)
145143, 144mulcomd 11311 . . . . . . . . . . . 12 (𝑧 ∈ ℂ → ((ℑ‘𝑧) · i) = (i · (ℑ‘𝑧)))
146142, 145oveq12d 7466 . . . . . . . . . . 11 (𝑧 ∈ ℂ → (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
147140, 146eqtr4d 2783 . . . . . . . . . 10 (𝑧 ∈ ℂ → 𝑧 = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)))
148135, 139, 147rspcedvd 3637 . . . . . . . . 9 (𝑧 ∈ ℂ → ∃𝑦 ∈ ℝ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)))
149129, 134, 148rspcedvd 3637 . . . . . . . 8 (𝑧 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)))
150128, 149impbii 209 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 ∈ ℂ)
151116, 150bitri 275 . . . . . 6 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ 𝑧 ∈ ℂ)
152151eqriv 2737 . . . . 5 ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) = ℂ
153 eqid 2740 . . . . . 6 (LBasis‘((subringAlg ‘ℂfld)‘ℝ)) = (LBasis‘((subringAlg ‘ℂfld)‘ℝ))
15424, 153, 9islbs4 21875 . . . . 5 ({1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ)) ↔ ({1, i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)) ∧ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) = ℂ))
155107, 152, 154mpbir2an 710 . . . 4 {1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ))
156153dimval 33613 . . . 4 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ {1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ))) → (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (♯‘{1, i}))
1577, 155, 156mp2an 691 . . 3 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (♯‘{1, i})
158 1nei 32750 . . . 4 1 ≠ i
159 hashprg 14444 . . . . 5 ((1 ∈ ℂ ∧ i ∈ ℂ) → (1 ≠ i ↔ (♯‘{1, i}) = 2))
16020, 28, 159mp2an 691 . . . 4 (1 ≠ i ↔ (♯‘{1, i}) = 2)
161158, 160mpbi 230 . . 3 (♯‘{1, i}) = 2
162157, 161eqtri 2768 . 2 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = 2
1633, 6, 1623eqtr2i 2774 1 (ℂfld[:]ℝfld) = 2
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wrex 3076  cun 3974  cin 3975  wss 3976  {csn 4648  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  2c2 12348  chash 14379  cre 15146  cim 15147  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880  LSpanclspn 20992  LBasisclbs 21096  LVecclvec 21124  subringAlg csra 21193  fldccnfld 21387  fldcrefld 21645  LIndSclinds 21848  dimcldim 33611  /FldExtcfldext 33651  [:]cextdg 33654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ocomp 17332  df-ds 17333  df-unif 17334  df-0g 17501  df-mre 17644  df-mrc 17645  df-mri 17646  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lbs 21097  df-lvec 21125  df-sra 21195  df-cnfld 21388  df-refld 21646  df-lindf 21849  df-linds 21850  df-dim 33612  df-fldext 33655  df-extdg 33656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator