Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccfldextdgrr Structured version   Visualization version   GIF version

Theorem ccfldextdgrr 31253
Description: The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023.)
Assertion
Ref Expression
ccfldextdgrr (ℂfld[:]ℝfld) = 2

Proof of Theorem ccfldextdgrr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ccfldextrr 31234 . . 3 fld/FldExtfld
2 extdgval 31240 . . 3 (ℂfld/FldExtfld → (ℂfld[:]ℝfld) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld))))
31, 2ax-mp 5 . 2 (ℂfld[:]ℝfld) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld)))
4 rebase 20361 . . . 4 ℝ = (Base‘ℝfld)
54fveq2i 6659 . . 3 ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘(Base‘ℝfld))
65fveq2i 6659 . 2 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (dim‘((subringAlg ‘ℂfld)‘(Base‘ℝfld)))
7 ccfldsrarelvec 31252 . . . 4 ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
8 df-pr 4523 . . . . . 6 {1, i} = ({1} ∪ {i})
9 eqid 2759 . . . . . . . 8 (LSpan‘((subringAlg ‘ℂfld)‘ℝ)) = (LSpan‘((subringAlg ‘ℂfld)‘ℝ))
10 eqidd 2760 . . . . . . . . . 10 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ))
11 cnfld0 20180 . . . . . . . . . . 11 0 = (0g‘ℂfld)
1211a1i 11 . . . . . . . . . 10 (⊤ → 0 = (0g‘ℂfld))
13 ax-resscn 10622 . . . . . . . . . . . 12 ℝ ⊆ ℂ
14 cnfldbas 20160 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
1513, 14sseqtri 3929 . . . . . . . . . . 11 ℝ ⊆ (Base‘ℂfld)
1615a1i 11 . . . . . . . . . 10 (⊤ → ℝ ⊆ (Base‘ℂfld))
1710, 12, 16sralmod0 20018 . . . . . . . . 9 (⊤ → 0 = (0g‘((subringAlg ‘ℂfld)‘ℝ)))
1817mptru 1546 . . . . . . . 8 0 = (0g‘((subringAlg ‘ℂfld)‘ℝ))
197a1i 11 . . . . . . . 8 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec)
20 ax-1cn 10623 . . . . . . . . . 10 1 ∈ ℂ
21 ax-1ne0 10634 . . . . . . . . . 10 1 ≠ 0
2210, 16srabase 20008 . . . . . . . . . . . . 13 (⊤ → (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ)))
2322mptru 1546 . . . . . . . . . . . 12 (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ))
2414, 23eqtri 2782 . . . . . . . . . . 11 ℂ = (Base‘((subringAlg ‘ℂfld)‘ℝ))
2524, 18lindssn 31084 . . . . . . . . . 10 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
267, 20, 21, 25mp3an 1459 . . . . . . . . 9 {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
2726a1i 11 . . . . . . . 8 (⊤ → {1} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
28 ax-icn 10624 . . . . . . . . . 10 i ∈ ℂ
29 ine0 11103 . . . . . . . . . 10 i ≠ 0
3024, 18lindssn 31084 . . . . . . . . . 10 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ i ∈ ℂ ∧ i ≠ 0) → {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
317, 28, 29, 30mp3an 1459 . . . . . . . . 9 {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
3231a1i 11 . . . . . . . 8 (⊤ → {i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
33 lveclmod 19936 . . . . . . . . . . . . . . 15 (((subringAlg ‘ℂfld)‘ℝ) ∈ LVec → ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod)
347, 33ax-mp 5 . . . . . . . . . . . . . 14 ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
35 df-refld 20360 . . . . . . . . . . . . . . . 16 fld = (ℂflds ℝ)
3610, 16srasca 20011 . . . . . . . . . . . . . . . . 17 (⊤ → (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ)))
3736mptru 1546 . . . . . . . . . . . . . . . 16 (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
3835, 37eqtri 2782 . . . . . . . . . . . . . . 15 fld = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
39 cnfldmul 20162 . . . . . . . . . . . . . . . 16 · = (.r‘ℂfld)
4010, 16sravsca 20012 . . . . . . . . . . . . . . . . 17 (⊤ → (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ)))
4140mptru 1546 . . . . . . . . . . . . . . . 16 (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4239, 41eqtri 2782 . . . . . . . . . . . . . . 15 · = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4338, 4, 24, 42, 9lspsnel 19833 . . . . . . . . . . . . . 14 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ 1 ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1)))
4434, 20, 43mp2an 692 . . . . . . . . . . . . 13 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ↔ ∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1))
4538, 4, 24, 42, 9lspsnel 19833 . . . . . . . . . . . . . 14 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ i ∈ ℂ) → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
4634, 28, 45mp2an 692 . . . . . . . . . . . . 13 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i}) ↔ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i))
4744, 46anbi12i 630 . . . . . . . . . . . 12 ((𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
48 reeanv 3286 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (∃𝑥 ∈ ℝ 𝑧 = (𝑥 · 1) ∧ ∃𝑦 ∈ ℝ 𝑧 = (𝑦 · i)))
49 simprl 771 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑥 · 1))
50 simpll 767 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℝ)
5150recnd 10697 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑥 ∈ ℂ)
5251mulid1d 10686 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑥 · 1) = 𝑥)
5349, 52eqtrd 2794 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 𝑥)
5453negeqd 10908 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑧 = -𝑥)
55 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (𝑦 · i))
56 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℝ)
5756recnd 10697 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑦 ∈ ℂ)
5828a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → i ∈ ℂ)
5957, 58mulcomd 10690 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑦 · i) = (i · 𝑦))
6055, 59eqtrd 2794 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = (i · 𝑦))
6154, 60oveq12d 7166 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = (-𝑥 + (i · 𝑦)))
6253, 51eqeltrd 2853 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 ∈ ℂ)
6362subidd 11013 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (𝑧𝑧) = 0)
6463negeqd 10908 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧𝑧) = -0)
6562, 62negsubdid 11040 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -(𝑧𝑧) = (-𝑧 + 𝑧))
66 neg0 10960 . . . . . . . . . . . . . . . . . . . . . 22 -0 = 0
6766a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 = 0)
6864, 65, 673eqtr3d 2802 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑧 + 𝑧) = 0)
6961, 68eqtr3d 2796 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 + (i · 𝑦)) = 0)
7050renegcld 11095 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 ∈ ℝ)
71 creq0 30584 . . . . . . . . . . . . . . . . . . . 20 ((-𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0))
7270, 56, 71syl2anc 588 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → ((-𝑥 = 0 ∧ 𝑦 = 0) ↔ (-𝑥 + (i · 𝑦)) = 0))
7369, 72mpbird 260 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → (-𝑥 = 0 ∧ 𝑦 = 0))
7473simpld 499 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -𝑥 = 0)
7551, 74negcon1ad 11020 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → -0 = 𝑥)
7653, 75, 673eqtr2d 2800 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i))) → 𝑧 = 0)
7776ex 417 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0))
7877rexlimivv 3217 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) → 𝑧 = 0)
79 0red 10672 . . . . . . . . . . . . . 14 (𝑧 = 0 → 0 ∈ ℝ)
80 simpr 489 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 0 ∧ 𝑥 = 0) → 𝑥 = 0)
8180oveq1d 7163 . . . . . . . . . . . . . . . . 17 ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑥 · 1) = (0 · 1))
8281eqeq2d 2770 . . . . . . . . . . . . . . . 16 ((𝑧 = 0 ∧ 𝑥 = 0) → (𝑧 = (𝑥 · 1) ↔ 𝑧 = (0 · 1)))
8382anbi1d 633 . . . . . . . . . . . . . . 15 ((𝑧 = 0 ∧ 𝑥 = 0) → ((𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i))))
8483rexbidv 3222 . . . . . . . . . . . . . 14 ((𝑧 = 0 ∧ 𝑥 = 0) → (∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i))))
85 simpr 489 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 0 ∧ 𝑦 = 0) → 𝑦 = 0)
8685oveq1d 7163 . . . . . . . . . . . . . . . . 17 ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑦 · i) = (0 · i))
8786eqeq2d 2770 . . . . . . . . . . . . . . . 16 ((𝑧 = 0 ∧ 𝑦 = 0) → (𝑧 = (𝑦 · i) ↔ 𝑧 = (0 · i)))
8887anbi2d 632 . . . . . . . . . . . . . . 15 ((𝑧 = 0 ∧ 𝑦 = 0) → ((𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i))))
8920mul02i 10857 . . . . . . . . . . . . . . . . . 18 (0 · 1) = 0
9089eqeq2i 2772 . . . . . . . . . . . . . . . . 17 (𝑧 = (0 · 1) ↔ 𝑧 = 0)
9190biimpri 231 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 𝑧 = (0 · 1))
9228mul02i 10857 . . . . . . . . . . . . . . . . . 18 (0 · i) = 0
9392eqeq2i 2772 . . . . . . . . . . . . . . . . 17 (𝑧 = (0 · i) ↔ 𝑧 = 0)
9493biimpri 231 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 𝑧 = (0 · i))
9591, 94jca 516 . . . . . . . . . . . . . . 15 (𝑧 = 0 → (𝑧 = (0 · 1) ∧ 𝑧 = (0 · i)))
9679, 88, 95rspcedvd 3545 . . . . . . . . . . . . . 14 (𝑧 = 0 → ∃𝑦 ∈ ℝ (𝑧 = (0 · 1) ∧ 𝑧 = (𝑦 · i)))
9779, 84, 96rspcedvd 3545 . . . . . . . . . . . . 13 (𝑧 = 0 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)))
9878, 97impbii 212 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 = (𝑥 · 1) ∧ 𝑧 = (𝑦 · i)) ↔ 𝑧 = 0)
9947, 48, 983bitr2i 303 . . . . . . . . . . 11 ((𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 = 0)
100 elin 3875 . . . . . . . . . . 11 (𝑧 ∈ (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∧ 𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})))
101 velsn 4536 . . . . . . . . . . 11 (𝑧 ∈ {0} ↔ 𝑧 = 0)
10299, 100, 1013bitr4i 307 . . . . . . . . . 10 (𝑧 ∈ (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) ↔ 𝑧 ∈ {0})
103102eqriv 2756 . . . . . . . . 9 (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) = {0}
104103a1i 11 . . . . . . . 8 (⊤ → (((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1}) ∩ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{i})) = {0})
1059, 18, 19, 27, 32, 104lindsun 31217 . . . . . . 7 (⊤ → ({1} ∪ {i}) ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)))
106105mptru 1546 . . . . . 6 ({1} ∪ {i}) ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
1078, 106eqeltri 2849 . . . . 5 {1, i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ))
108 cnfldadd 20161 . . . . . . . . . 10 + = (+g‘ℂfld)
10910, 16sraaddg 20009 . . . . . . . . . . 11 (⊤ → (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ)))
110109mptru 1546 . . . . . . . . . 10 (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ))
111108, 110eqtri 2782 . . . . . . . . 9 + = (+g‘((subringAlg ‘ℂfld)‘ℝ))
11234a1i 11 . . . . . . . . 9 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod)
113 1cnd 10664 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
11428a1i 11 . . . . . . . . 9 (⊤ → i ∈ ℂ)
11524, 111, 38, 4, 42, 9, 112, 113, 114lspprel 19924 . . . . . . . 8 (⊤ → (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i))))
116115mptru 1546 . . . . . . 7 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)))
117 simpl 487 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
118117recnd 10697 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
119 1cnd 10664 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
120118, 119mulcld 10689 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 1) ∈ ℂ)
121 simpr 489 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
122121recnd 10697 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
12328a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
124122, 123mulcld 10689 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 · i) ∈ ℂ)
125120, 124addcld 10688 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + (𝑦 · i)) ∈ ℂ)
126 eleq1 2840 . . . . . . . . . 10 (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → (𝑧 ∈ ℂ ↔ ((𝑥 · 1) + (𝑦 · i)) ∈ ℂ))
127125, 126syl5ibrcom 250 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈ ℂ))
128127rexlimivv 3217 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) → 𝑧 ∈ ℂ)
129 recl 14507 . . . . . . . . 9 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
130 simpr 489 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → 𝑥 = (ℜ‘𝑧))
131130oveq1d 7163 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑥 · 1) = ((ℜ‘𝑧) · 1))
132131oveq1d 7163 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → ((𝑥 · 1) + (𝑦 · i)) = (((ℜ‘𝑧) · 1) + (𝑦 · i)))
133132eqeq2d 2770 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i))))
134133rexbidv 3222 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑥 = (ℜ‘𝑧)) → (∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ ∃𝑦 ∈ ℝ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i))))
135 imcl 14508 . . . . . . . . . 10 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
136 simpr 489 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → 𝑦 = (ℑ‘𝑧))
137136oveq1d 7163 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑦 · i) = ((ℑ‘𝑧) · i))
138137oveq2d 7164 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (((ℜ‘𝑧) · 1) + (𝑦 · i)) = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)))
139138eqeq2d 2770 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 𝑦 = (ℑ‘𝑧)) → (𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)) ↔ 𝑧 = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i))))
140 replim 14513 . . . . . . . . . . 11 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
141129recnd 10697 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℂ)
142141mulid1d 10686 . . . . . . . . . . . 12 (𝑧 ∈ ℂ → ((ℜ‘𝑧) · 1) = (ℜ‘𝑧))
143135recnd 10697 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℂ)
14428a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℂ → i ∈ ℂ)
145143, 144mulcomd 10690 . . . . . . . . . . . 12 (𝑧 ∈ ℂ → ((ℑ‘𝑧) · i) = (i · (ℑ‘𝑧)))
146142, 145oveq12d 7166 . . . . . . . . . . 11 (𝑧 ∈ ℂ → (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
147140, 146eqtr4d 2797 . . . . . . . . . 10 (𝑧 ∈ ℂ → 𝑧 = (((ℜ‘𝑧) · 1) + ((ℑ‘𝑧) · i)))
148135, 139, 147rspcedvd 3545 . . . . . . . . 9 (𝑧 ∈ ℂ → ∃𝑦 ∈ ℝ 𝑧 = (((ℜ‘𝑧) · 1) + (𝑦 · i)))
149129, 134, 148rspcedvd 3545 . . . . . . . 8 (𝑧 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)))
150128, 149impbii 212 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑧 = ((𝑥 · 1) + (𝑦 · i)) ↔ 𝑧 ∈ ℂ)
151116, 150bitri 278 . . . . . 6 (𝑧 ∈ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) ↔ 𝑧 ∈ ℂ)
152151eqriv 2756 . . . . 5 ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) = ℂ
153 eqid 2759 . . . . . 6 (LBasis‘((subringAlg ‘ℂfld)‘ℝ)) = (LBasis‘((subringAlg ‘ℂfld)‘ℝ))
15424, 153, 9islbs4 20587 . . . . 5 ({1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ)) ↔ ({1, i} ∈ (LIndS‘((subringAlg ‘ℂfld)‘ℝ)) ∧ ((LSpan‘((subringAlg ‘ℂfld)‘ℝ))‘{1, i}) = ℂ))
155107, 152, 154mpbir2an 711 . . . 4 {1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ))
156153dimval 31197 . . . 4 ((((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ∧ {1, i} ∈ (LBasis‘((subringAlg ‘ℂfld)‘ℝ))) → (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (♯‘{1, i}))
1577, 155, 156mp2an 692 . . 3 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = (♯‘{1, i})
158 1nei 30585 . . . 4 1 ≠ i
159 hashprg 13796 . . . . 5 ((1 ∈ ℂ ∧ i ∈ ℂ) → (1 ≠ i ↔ (♯‘{1, i}) = 2))
16020, 28, 159mp2an 692 . . . 4 (1 ≠ i ↔ (♯‘{1, i}) = 2)
161158, 160mpbi 233 . . 3 (♯‘{1, i}) = 2
162157, 161eqtri 2782 . 2 (dim‘((subringAlg ‘ℂfld)‘ℝ)) = 2
1633, 6, 1623eqtr2i 2788 1 (ℂfld[:]ℝfld) = 2
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 400   = wceq 1539  wtru 1540  wcel 2112  wne 2952  wrex 3072  cun 3857  cin 3858  wss 3859  {csn 4520  {cpr 4522   class class class wbr 5030  cfv 6333  (class class class)co 7148  cc 10563  cr 10564  0cc0 10565  1c1 10566  ici 10567   + caddc 10568   · cmul 10570  cmin 10898  -cneg 10899  2c2 11719  chash 13730  cre 14494  cim 14495  Basecbs 16531  s cress 16532  +gcplusg 16613  .rcmulr 16614  Scalarcsca 16616   ·𝑠 cvsca 16617  0gc0g 16761  LModclmod 19692  LSpanclspn 19801  LBasisclbs 19904  LVecclvec 19932  subringAlg csra 19998  fldccnfld 20156  fldcrefld 20359  LIndSclinds 20560  dimcldim 31195  /FldExtcfldext 31224  [:]cextdg 31227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-reg 9079  ax-inf2 9127  ax-ac2 9913  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-addf 10644  ax-mulf 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-1st 7691  df-2nd 7692  df-tpos 7900  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-oadd 8114  df-er 8297  df-map 8416  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-oi 8997  df-r1 9216  df-rank 9217  df-dju 9353  df-card 9391  df-acn 9394  df-ac 9566  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-xnn0 11997  df-z 12011  df-dec 12128  df-uz 12273  df-fz 12930  df-hash 13731  df-cj 14496  df-re 14497  df-im 14498  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-starv 16628  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ocomp 16634  df-ds 16635  df-unif 16636  df-0g 16763  df-mre 16905  df-mrc 16906  df-mri 16907  df-acs 16908  df-proset 17594  df-drs 17595  df-poset 17612  df-ipo 17818  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-grp 18162  df-minusg 18163  df-sbg 18164  df-subg 18333  df-cntz 18504  df-lsm 18818  df-cmn 18965  df-abl 18966  df-mgp 19298  df-ur 19310  df-ring 19357  df-cring 19358  df-oppr 19434  df-dvdsr 19452  df-unit 19453  df-invr 19483  df-dvr 19494  df-drng 19562  df-field 19563  df-subrg 19591  df-lmod 19694  df-lss 19762  df-lsp 19802  df-lbs 19905  df-lvec 19933  df-sra 20002  df-cnfld 20157  df-refld 20360  df-lindf 20561  df-linds 20562  df-dim 31196  df-fldext 31228  df-extdg 31229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator