Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0slmod Structured version   Visualization version   GIF version

Theorem xrge0slmod 33324
Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
xrge0slmod.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0slmod.2 𝑊 = (𝐺v (0[,)+∞))
Assertion
Ref Expression
xrge0slmod 𝑊 ∈ SLMod

Proof of Theorem xrge0slmod
Dummy variables 𝑟 𝑞 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0slmod.1 . . . 4 𝐺 = (ℝ*𝑠s (0[,]+∞))
2 xrge0cmn 21391 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
31, 2eqeltri 2829 . . 3 𝐺 ∈ CMnd
4 ovex 7388 . . . 4 (0[,)+∞) ∈ V
5 xrge0slmod.2 . . . . 5 𝑊 = (𝐺v (0[,)+∞))
65resvcmn 33316 . . . 4 ((0[,)+∞) ∈ V → (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd))
74, 6ax-mp 5 . . 3 (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd)
83, 7mpbi 230 . 2 𝑊 ∈ CMnd
9 rge0srg 21385 . 2 (ℂflds (0[,)+∞)) ∈ SRing
10 icossicc 13346 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
11 simplr 768 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,)+∞))
1210, 11sselid 3929 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,]+∞))
13 simprr 772 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ (0[,]+∞))
14 ge0xmulcl 13373 . . . . . . 7 ((𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
1512, 13, 14syl2anc 584 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
16 simprl 770 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑥 ∈ (0[,]+∞))
17 xrge0adddi 33011 . . . . . . 7 ((𝑤 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞)) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
1813, 16, 12, 17syl3anc 1373 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
19 rge0ssre 13366 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
20 simpll 766 . . . . . . . . . 10 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,)+∞))
2119, 20sselid 3929 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ)
2219, 11sselid 3929 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ)
23 rexadd 13141 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2421, 22, 23syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2524oveq1d 7370 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 + 𝑟) ·e 𝑤))
2610, 20sselid 3929 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,]+∞))
27 xrge0adddir 33010 . . . . . . . 8 ((𝑞 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2826, 12, 13, 27syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2925, 28eqtr3d 2770 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
3015, 18, 293jca 1128 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))))
31 rexmul 13180 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3221, 22, 31syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3332oveq1d 7370 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = ((𝑞 · 𝑟) ·e 𝑤))
3421rexrd 11172 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ*)
3522rexrd 11172 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ*)
36 iccssxr 13340 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3736, 13sselid 3929 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ ℝ*)
38 xmulass 13196 . . . . . . . 8 ((𝑞 ∈ ℝ*𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
3934, 35, 37, 38syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
4033, 39eqtr3d 2770 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
41 xmullid 13189 . . . . . . 7 (𝑤 ∈ ℝ* → (1 ·e 𝑤) = 𝑤)
4237, 41syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (1 ·e 𝑤) = 𝑤)
43 xmul02 13177 . . . . . . 7 (𝑤 ∈ ℝ* → (0 ·e 𝑤) = 0)
4437, 43syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (0 ·e 𝑤) = 0)
4540, 42, 443jca 1128 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
4630, 45jca 511 . . . 4 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4746ralrimivva 3177 . . 3 ((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) → ∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4847rgen2 3174 . 2 𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
49 xrge0base 17521 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
501fveq2i 6834 . . . . . 6 (Base‘𝐺) = (Base‘(ℝ*𝑠s (0[,]+∞)))
5149, 50eqtr4i 2759 . . . . 5 (0[,]+∞) = (Base‘𝐺)
525, 51resvbas 33310 . . . 4 ((0[,)+∞) ∈ V → (0[,]+∞) = (Base‘𝑊))
534, 52ax-mp 5 . . 3 (0[,]+∞) = (Base‘𝑊)
54 xrge0plusg 21386 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
551fveq2i 6834 . . . . . 6 (+g𝐺) = (+g‘(ℝ*𝑠s (0[,]+∞)))
5654, 55eqtr4i 2759 . . . . 5 +𝑒 = (+g𝐺)
575, 56resvplusg 33311 . . . 4 ((0[,)+∞) ∈ V → +𝑒 = (+g𝑊))
584, 57ax-mp 5 . . 3 +𝑒 = (+g𝑊)
59 ovex 7388 . . . . . 6 (0[,]+∞) ∈ V
60 ax-xrsvsca 32997 . . . . . . 7 ·e = ( ·𝑠 ‘ℝ*𝑠)
611, 60ressvsca 17258 . . . . . 6 ((0[,]+∞) ∈ V → ·e = ( ·𝑠𝐺))
6259, 61ax-mp 5 . . . . 5 ·e = ( ·𝑠𝐺)
635, 62resvvsca 33312 . . . 4 ((0[,)+∞) ∈ V → ·e = ( ·𝑠𝑊))
644, 63ax-mp 5 . . 3 ·e = ( ·𝑠𝑊)
65 xrge00 33006 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
661fveq2i 6834 . . . . . 6 (0g𝐺) = (0g‘(ℝ*𝑠s (0[,]+∞)))
6765, 66eqtr4i 2759 . . . . 5 0 = (0g𝐺)
685, 67resv0g 33314 . . . 4 ((0[,)+∞) ∈ V → 0 = (0g𝑊))
694, 68ax-mp 5 . . 3 0 = (0g𝑊)
70 df-refld 21552 . . . . . 6 fld = (ℂflds ℝ)
7170oveq1i 7365 . . . . 5 (ℝflds (0[,)+∞)) = ((ℂflds ℝ) ↾s (0[,)+∞))
72 reex 11107 . . . . . 6 ℝ ∈ V
73 ressress 17168 . . . . . 6 ((ℝ ∈ V ∧ (0[,)+∞) ∈ V) → ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞))))
7472, 4, 73mp2an 692 . . . . 5 ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
7571, 74eqtri 2756 . . . 4 (ℝflds (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
76 ax-xrssca 32996 . . . . . . . 8 fld = (Scalar‘ℝ*𝑠)
771, 76resssca 17257 . . . . . . 7 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘𝐺))
7859, 77ax-mp 5 . . . . . 6 fld = (Scalar‘𝐺)
79 rebase 21553 . . . . . 6 ℝ = (Base‘ℝfld)
805, 78, 79resvsca 33308 . . . . 5 ((0[,)+∞) ∈ V → (ℝflds (0[,)+∞)) = (Scalar‘𝑊))
814, 80ax-mp 5 . . . 4 (ℝflds (0[,)+∞)) = (Scalar‘𝑊)
82 incom 4160 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (ℝ ∩ (0[,)+∞))
83 dfss2 3917 . . . . . . 7 ((0[,)+∞) ⊆ ℝ ↔ ((0[,)+∞) ∩ ℝ) = (0[,)+∞))
8419, 83mpbi 230 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (0[,)+∞)
8582, 84eqtr3i 2758 . . . . 5 (ℝ ∩ (0[,)+∞)) = (0[,)+∞)
8685oveq2i 7366 . . . 4 (ℂflds (ℝ ∩ (0[,)+∞))) = (ℂflds (0[,)+∞))
8775, 81, 863eqtr3ri 2765 . . 3 (ℂflds (0[,)+∞)) = (Scalar‘𝑊)
88 ax-resscn 11073 . . . . 5 ℝ ⊆ ℂ
8919, 88sstri 3941 . . . 4 (0[,)+∞) ⊆ ℂ
90 eqid 2733 . . . . 5 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
91 cnfldbas 21305 . . . . 5 ℂ = (Base‘ℂfld)
9290, 91ressbas2 17159 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
9389, 92ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
94 cnfldadd 21307 . . . . 5 + = (+g‘ℂfld)
9590, 94ressplusg 17205 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
964, 95ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
97 cnfldmul 21309 . . . . 5 · = (.r‘ℂfld)
9890, 97ressmulr 17221 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
994, 98ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
100 cndrng 21345 . . . . 5 fld ∈ DivRing
101 drngring 20661 . . . . 5 (ℂfld ∈ DivRing → ℂfld ∈ Ring)
102100, 101ax-mp 5 . . . 4 fld ∈ Ring
103 1re 11122 . . . . . 6 1 ∈ ℝ
104 0le1 11650 . . . . . 6 0 ≤ 1
105 ltpnf 13029 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
106103, 105ax-mp 5 . . . . . 6 1 < +∞
107103, 104, 1063pm3.2i 1340 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)
108 0re 11124 . . . . . 6 0 ∈ ℝ
109 pnfxr 11176 . . . . . 6 +∞ ∈ ℝ*
110 elico2 13320 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
111108, 109, 110mp2an 692 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
112107, 111mpbir 231 . . . 4 1 ∈ (0[,)+∞)
113 cnfld1 21340 . . . . 5 1 = (1r‘ℂfld)
11490, 91, 113ress1r 33212 . . . 4 ((ℂfld ∈ Ring ∧ 1 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 1 = (1r‘(ℂflds (0[,)+∞))))
115102, 112, 89, 114mp3an 1463 . . 3 1 = (1r‘(ℂflds (0[,)+∞)))
116 ringmnd 20171 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
117100, 101, 116mp2b 10 . . . 4 fld ∈ Mnd
118 0e0icopnf 13368 . . . 4 0 ∈ (0[,)+∞)
119 cnfld0 21339 . . . . 5 0 = (0g‘ℂfld)
12090, 91, 119ress0g 18680 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
121117, 118, 89, 120mp3an 1463 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
12253, 58, 64, 69, 87, 93, 96, 99, 115, 121isslmd 33182 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (ℂflds (0[,)+∞)) ∈ SRing ∧ ∀𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))))
1238, 9, 48, 122mpbir3an 1342 1 𝑊 ∈ SLMod
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  cin 3898  wss 3899   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  +∞cpnf 11153  *cxr 11155   < clt 11156  cle 11157   +𝑒 cxad 13019   ·e cxmu 13020  [,)cico 13257  [,]cicc 13258  Basecbs 17130  s cress 17151  +gcplusg 17171  .rcmulr 17172  Scalarcsca 17174   ·𝑠 cvsca 17175  0gc0g 17353  *𝑠cxrs 17414  Mndcmnd 18652  CMndccmn 19702  1rcur 20109  SRingcsrg 20114  Ringcrg 20161  DivRingcdr 20654  fldccnfld 21301  fldcrefld 21551  SLModcslmd 33180  v cresv 33302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-addf 11095  ax-mulf 11096  ax-xrssca 32996  ax-xrsvsca 32997
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ico 13261  df-icc 13262  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-0g 17355  df-xrs 17416  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-grp 18859  df-minusg 18860  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-srg 20115  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-drng 20656  df-cnfld 21302  df-refld 21552  df-slmd 33181  df-resv 33303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator