Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0slmod Structured version   Visualization version   GIF version

Theorem xrge0slmod 33326
Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
xrge0slmod.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0slmod.2 𝑊 = (𝐺v (0[,)+∞))
Assertion
Ref Expression
xrge0slmod 𝑊 ∈ SLMod

Proof of Theorem xrge0slmod
Dummy variables 𝑟 𝑞 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0slmod.1 . . . 4 𝐺 = (ℝ*𝑠s (0[,]+∞))
2 xrge0cmn 21332 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
31, 2eqeltri 2825 . . 3 𝐺 ∈ CMnd
4 ovex 7423 . . . 4 (0[,)+∞) ∈ V
5 xrge0slmod.2 . . . . 5 𝑊 = (𝐺v (0[,)+∞))
65resvcmn 33319 . . . 4 ((0[,)+∞) ∈ V → (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd))
74, 6ax-mp 5 . . 3 (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd)
83, 7mpbi 230 . 2 𝑊 ∈ CMnd
9 rge0srg 21362 . 2 (ℂflds (0[,)+∞)) ∈ SRing
10 icossicc 13404 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
11 simplr 768 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,)+∞))
1210, 11sselid 3947 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,]+∞))
13 simprr 772 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ (0[,]+∞))
14 ge0xmulcl 13431 . . . . . . 7 ((𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
1512, 13, 14syl2anc 584 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
16 simprl 770 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑥 ∈ (0[,]+∞))
17 xrge0adddi 32967 . . . . . . 7 ((𝑤 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞)) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
1813, 16, 12, 17syl3anc 1373 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
19 rge0ssre 13424 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
20 simpll 766 . . . . . . . . . 10 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,)+∞))
2119, 20sselid 3947 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ)
2219, 11sselid 3947 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ)
23 rexadd 13199 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2421, 22, 23syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2524oveq1d 7405 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 + 𝑟) ·e 𝑤))
2610, 20sselid 3947 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,]+∞))
27 xrge0adddir 32966 . . . . . . . 8 ((𝑞 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2826, 12, 13, 27syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2925, 28eqtr3d 2767 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
3015, 18, 293jca 1128 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))))
31 rexmul 13238 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3221, 22, 31syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3332oveq1d 7405 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = ((𝑞 · 𝑟) ·e 𝑤))
3421rexrd 11231 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ*)
3522rexrd 11231 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ*)
36 iccssxr 13398 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3736, 13sselid 3947 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ ℝ*)
38 xmulass 13254 . . . . . . . 8 ((𝑞 ∈ ℝ*𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
3934, 35, 37, 38syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
4033, 39eqtr3d 2767 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
41 xmullid 13247 . . . . . . 7 (𝑤 ∈ ℝ* → (1 ·e 𝑤) = 𝑤)
4237, 41syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (1 ·e 𝑤) = 𝑤)
43 xmul02 13235 . . . . . . 7 (𝑤 ∈ ℝ* → (0 ·e 𝑤) = 0)
4437, 43syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (0 ·e 𝑤) = 0)
4540, 42, 443jca 1128 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
4630, 45jca 511 . . . 4 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4746ralrimivva 3181 . . 3 ((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) → ∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4847rgen2 3178 . 2 𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
49 xrge0base 32959 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
501fveq2i 6864 . . . . . 6 (Base‘𝐺) = (Base‘(ℝ*𝑠s (0[,]+∞)))
5149, 50eqtr4i 2756 . . . . 5 (0[,]+∞) = (Base‘𝐺)
525, 51resvbas 33313 . . . 4 ((0[,)+∞) ∈ V → (0[,]+∞) = (Base‘𝑊))
534, 52ax-mp 5 . . 3 (0[,]+∞) = (Base‘𝑊)
54 xrge0plusg 32961 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
551fveq2i 6864 . . . . . 6 (+g𝐺) = (+g‘(ℝ*𝑠s (0[,]+∞)))
5654, 55eqtr4i 2756 . . . . 5 +𝑒 = (+g𝐺)
575, 56resvplusg 33314 . . . 4 ((0[,)+∞) ∈ V → +𝑒 = (+g𝑊))
584, 57ax-mp 5 . . 3 +𝑒 = (+g𝑊)
59 ovex 7423 . . . . . 6 (0[,]+∞) ∈ V
60 ax-xrsvsca 32950 . . . . . . 7 ·e = ( ·𝑠 ‘ℝ*𝑠)
611, 60ressvsca 17314 . . . . . 6 ((0[,]+∞) ∈ V → ·e = ( ·𝑠𝐺))
6259, 61ax-mp 5 . . . . 5 ·e = ( ·𝑠𝐺)
635, 62resvvsca 33315 . . . 4 ((0[,)+∞) ∈ V → ·e = ( ·𝑠𝑊))
644, 63ax-mp 5 . . 3 ·e = ( ·𝑠𝑊)
65 xrge00 32960 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
661fveq2i 6864 . . . . . 6 (0g𝐺) = (0g‘(ℝ*𝑠s (0[,]+∞)))
6765, 66eqtr4i 2756 . . . . 5 0 = (0g𝐺)
685, 67resv0g 33317 . . . 4 ((0[,)+∞) ∈ V → 0 = (0g𝑊))
694, 68ax-mp 5 . . 3 0 = (0g𝑊)
70 df-refld 21521 . . . . . 6 fld = (ℂflds ℝ)
7170oveq1i 7400 . . . . 5 (ℝflds (0[,)+∞)) = ((ℂflds ℝ) ↾s (0[,)+∞))
72 reex 11166 . . . . . 6 ℝ ∈ V
73 ressress 17224 . . . . . 6 ((ℝ ∈ V ∧ (0[,)+∞) ∈ V) → ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞))))
7472, 4, 73mp2an 692 . . . . 5 ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
7571, 74eqtri 2753 . . . 4 (ℝflds (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
76 ax-xrssca 32949 . . . . . . . 8 fld = (Scalar‘ℝ*𝑠)
771, 76resssca 17313 . . . . . . 7 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘𝐺))
7859, 77ax-mp 5 . . . . . 6 fld = (Scalar‘𝐺)
79 rebase 21522 . . . . . 6 ℝ = (Base‘ℝfld)
805, 78, 79resvsca 33311 . . . . 5 ((0[,)+∞) ∈ V → (ℝflds (0[,)+∞)) = (Scalar‘𝑊))
814, 80ax-mp 5 . . . 4 (ℝflds (0[,)+∞)) = (Scalar‘𝑊)
82 incom 4175 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (ℝ ∩ (0[,)+∞))
83 dfss2 3935 . . . . . . 7 ((0[,)+∞) ⊆ ℝ ↔ ((0[,)+∞) ∩ ℝ) = (0[,)+∞))
8419, 83mpbi 230 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (0[,)+∞)
8582, 84eqtr3i 2755 . . . . 5 (ℝ ∩ (0[,)+∞)) = (0[,)+∞)
8685oveq2i 7401 . . . 4 (ℂflds (ℝ ∩ (0[,)+∞))) = (ℂflds (0[,)+∞))
8775, 81, 863eqtr3ri 2762 . . 3 (ℂflds (0[,)+∞)) = (Scalar‘𝑊)
88 ax-resscn 11132 . . . . 5 ℝ ⊆ ℂ
8919, 88sstri 3959 . . . 4 (0[,)+∞) ⊆ ℂ
90 eqid 2730 . . . . 5 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
91 cnfldbas 21275 . . . . 5 ℂ = (Base‘ℂfld)
9290, 91ressbas2 17215 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
9389, 92ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
94 cnfldadd 21277 . . . . 5 + = (+g‘ℂfld)
9590, 94ressplusg 17261 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
964, 95ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
97 cnfldmul 21279 . . . . 5 · = (.r‘ℂfld)
9890, 97ressmulr 17277 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
994, 98ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
100 cndrng 21317 . . . . 5 fld ∈ DivRing
101 drngring 20652 . . . . 5 (ℂfld ∈ DivRing → ℂfld ∈ Ring)
102100, 101ax-mp 5 . . . 4 fld ∈ Ring
103 1re 11181 . . . . . 6 1 ∈ ℝ
104 0le1 11708 . . . . . 6 0 ≤ 1
105 ltpnf 13087 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
106103, 105ax-mp 5 . . . . . 6 1 < +∞
107103, 104, 1063pm3.2i 1340 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)
108 0re 11183 . . . . . 6 0 ∈ ℝ
109 pnfxr 11235 . . . . . 6 +∞ ∈ ℝ*
110 elico2 13378 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
111108, 109, 110mp2an 692 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
112107, 111mpbir 231 . . . 4 1 ∈ (0[,)+∞)
113 cnfld1 21312 . . . . 5 1 = (1r‘ℂfld)
11490, 91, 113ress1r 33192 . . . 4 ((ℂfld ∈ Ring ∧ 1 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 1 = (1r‘(ℂflds (0[,)+∞))))
115102, 112, 89, 114mp3an 1463 . . 3 1 = (1r‘(ℂflds (0[,)+∞)))
116 ringmnd 20159 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
117100, 101, 116mp2b 10 . . . 4 fld ∈ Mnd
118 0e0icopnf 13426 . . . 4 0 ∈ (0[,)+∞)
119 cnfld0 21311 . . . . 5 0 = (0g‘ℂfld)
12090, 91, 119ress0g 18696 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
121117, 118, 89, 120mp3an 1463 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
12253, 58, 64, 69, 87, 93, 96, 99, 115, 121isslmd 33162 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (ℂflds (0[,)+∞)) ∈ SRing ∧ ∀𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))))
1238, 9, 48, 122mpbir3an 1342 1 𝑊 ∈ SLMod
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216   +𝑒 cxad 13077   ·e cxmu 13078  [,)cico 13315  [,]cicc 13316  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  *𝑠cxrs 17470  Mndcmnd 18668  CMndccmn 19717  1rcur 20097  SRingcsrg 20102  Ringcrg 20149  DivRingcdr 20645  fldccnfld 21271  fldcrefld 21520  SLModcslmd 33160  v cresv 33305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155  ax-xrssca 32949  ax-xrsvsca 32950
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-icc 13320  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-xrs 17472  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-cnfld 21272  df-refld 21521  df-slmd 33161  df-resv 33306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator