Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0slmod Structured version   Visualization version   GIF version

Theorem xrge0slmod 33303
Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
xrge0slmod.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0slmod.2 𝑊 = (𝐺v (0[,)+∞))
Assertion
Ref Expression
xrge0slmod 𝑊 ∈ SLMod

Proof of Theorem xrge0slmod
Dummy variables 𝑟 𝑞 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0slmod.1 . . . 4 𝐺 = (ℝ*𝑠s (0[,]+∞))
2 xrge0cmn 21374 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
31, 2eqeltri 2825 . . 3 𝐺 ∈ CMnd
4 ovex 7374 . . . 4 (0[,)+∞) ∈ V
5 xrge0slmod.2 . . . . 5 𝑊 = (𝐺v (0[,)+∞))
65resvcmn 33295 . . . 4 ((0[,)+∞) ∈ V → (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd))
74, 6ax-mp 5 . . 3 (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd)
83, 7mpbi 230 . 2 𝑊 ∈ CMnd
9 rge0srg 21368 . 2 (ℂflds (0[,)+∞)) ∈ SRing
10 icossicc 13328 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
11 simplr 768 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,)+∞))
1210, 11sselid 3930 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,]+∞))
13 simprr 772 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ (0[,]+∞))
14 ge0xmulcl 13355 . . . . . . 7 ((𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
1512, 13, 14syl2anc 584 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
16 simprl 770 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑥 ∈ (0[,]+∞))
17 xrge0adddi 32990 . . . . . . 7 ((𝑤 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞)) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
1813, 16, 12, 17syl3anc 1373 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
19 rge0ssre 13348 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
20 simpll 766 . . . . . . . . . 10 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,)+∞))
2119, 20sselid 3930 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ)
2219, 11sselid 3930 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ)
23 rexadd 13123 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2421, 22, 23syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2524oveq1d 7356 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 + 𝑟) ·e 𝑤))
2610, 20sselid 3930 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,]+∞))
27 xrge0adddir 32989 . . . . . . . 8 ((𝑞 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2826, 12, 13, 27syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2925, 28eqtr3d 2767 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
3015, 18, 293jca 1128 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))))
31 rexmul 13162 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3221, 22, 31syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3332oveq1d 7356 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = ((𝑞 · 𝑟) ·e 𝑤))
3421rexrd 11154 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ*)
3522rexrd 11154 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ*)
36 iccssxr 13322 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3736, 13sselid 3930 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ ℝ*)
38 xmulass 13178 . . . . . . . 8 ((𝑞 ∈ ℝ*𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
3934, 35, 37, 38syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
4033, 39eqtr3d 2767 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
41 xmullid 13171 . . . . . . 7 (𝑤 ∈ ℝ* → (1 ·e 𝑤) = 𝑤)
4237, 41syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (1 ·e 𝑤) = 𝑤)
43 xmul02 13159 . . . . . . 7 (𝑤 ∈ ℝ* → (0 ·e 𝑤) = 0)
4437, 43syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (0 ·e 𝑤) = 0)
4540, 42, 443jca 1128 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
4630, 45jca 511 . . . 4 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4746ralrimivva 3173 . . 3 ((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) → ∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4847rgen2 3170 . 2 𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
49 xrge0base 17503 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
501fveq2i 6820 . . . . . 6 (Base‘𝐺) = (Base‘(ℝ*𝑠s (0[,]+∞)))
5149, 50eqtr4i 2756 . . . . 5 (0[,]+∞) = (Base‘𝐺)
525, 51resvbas 33289 . . . 4 ((0[,)+∞) ∈ V → (0[,]+∞) = (Base‘𝑊))
534, 52ax-mp 5 . . 3 (0[,]+∞) = (Base‘𝑊)
54 xrge0plusg 21369 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
551fveq2i 6820 . . . . . 6 (+g𝐺) = (+g‘(ℝ*𝑠s (0[,]+∞)))
5654, 55eqtr4i 2756 . . . . 5 +𝑒 = (+g𝐺)
575, 56resvplusg 33290 . . . 4 ((0[,)+∞) ∈ V → +𝑒 = (+g𝑊))
584, 57ax-mp 5 . . 3 +𝑒 = (+g𝑊)
59 ovex 7374 . . . . . 6 (0[,]+∞) ∈ V
60 ax-xrsvsca 32976 . . . . . . 7 ·e = ( ·𝑠 ‘ℝ*𝑠)
611, 60ressvsca 17240 . . . . . 6 ((0[,]+∞) ∈ V → ·e = ( ·𝑠𝐺))
6259, 61ax-mp 5 . . . . 5 ·e = ( ·𝑠𝐺)
635, 62resvvsca 33291 . . . 4 ((0[,)+∞) ∈ V → ·e = ( ·𝑠𝑊))
644, 63ax-mp 5 . . 3 ·e = ( ·𝑠𝑊)
65 xrge00 32985 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
661fveq2i 6820 . . . . . 6 (0g𝐺) = (0g‘(ℝ*𝑠s (0[,]+∞)))
6765, 66eqtr4i 2756 . . . . 5 0 = (0g𝐺)
685, 67resv0g 33293 . . . 4 ((0[,)+∞) ∈ V → 0 = (0g𝑊))
694, 68ax-mp 5 . . 3 0 = (0g𝑊)
70 df-refld 21535 . . . . . 6 fld = (ℂflds ℝ)
7170oveq1i 7351 . . . . 5 (ℝflds (0[,)+∞)) = ((ℂflds ℝ) ↾s (0[,)+∞))
72 reex 11089 . . . . . 6 ℝ ∈ V
73 ressress 17150 . . . . . 6 ((ℝ ∈ V ∧ (0[,)+∞) ∈ V) → ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞))))
7472, 4, 73mp2an 692 . . . . 5 ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
7571, 74eqtri 2753 . . . 4 (ℝflds (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
76 ax-xrssca 32975 . . . . . . . 8 fld = (Scalar‘ℝ*𝑠)
771, 76resssca 17239 . . . . . . 7 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘𝐺))
7859, 77ax-mp 5 . . . . . 6 fld = (Scalar‘𝐺)
79 rebase 21536 . . . . . 6 ℝ = (Base‘ℝfld)
805, 78, 79resvsca 33287 . . . . 5 ((0[,)+∞) ∈ V → (ℝflds (0[,)+∞)) = (Scalar‘𝑊))
814, 80ax-mp 5 . . . 4 (ℝflds (0[,)+∞)) = (Scalar‘𝑊)
82 incom 4157 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (ℝ ∩ (0[,)+∞))
83 dfss2 3918 . . . . . . 7 ((0[,)+∞) ⊆ ℝ ↔ ((0[,)+∞) ∩ ℝ) = (0[,)+∞))
8419, 83mpbi 230 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (0[,)+∞)
8582, 84eqtr3i 2755 . . . . 5 (ℝ ∩ (0[,)+∞)) = (0[,)+∞)
8685oveq2i 7352 . . . 4 (ℂflds (ℝ ∩ (0[,)+∞))) = (ℂflds (0[,)+∞))
8775, 81, 863eqtr3ri 2762 . . 3 (ℂflds (0[,)+∞)) = (Scalar‘𝑊)
88 ax-resscn 11055 . . . . 5 ℝ ⊆ ℂ
8919, 88sstri 3942 . . . 4 (0[,)+∞) ⊆ ℂ
90 eqid 2730 . . . . 5 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
91 cnfldbas 21288 . . . . 5 ℂ = (Base‘ℂfld)
9290, 91ressbas2 17141 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
9389, 92ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
94 cnfldadd 21290 . . . . 5 + = (+g‘ℂfld)
9590, 94ressplusg 17187 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
964, 95ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
97 cnfldmul 21292 . . . . 5 · = (.r‘ℂfld)
9890, 97ressmulr 17203 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
994, 98ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
100 cndrng 21328 . . . . 5 fld ∈ DivRing
101 drngring 20644 . . . . 5 (ℂfld ∈ DivRing → ℂfld ∈ Ring)
102100, 101ax-mp 5 . . . 4 fld ∈ Ring
103 1re 11104 . . . . . 6 1 ∈ ℝ
104 0le1 11632 . . . . . 6 0 ≤ 1
105 ltpnf 13011 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
106103, 105ax-mp 5 . . . . . 6 1 < +∞
107103, 104, 1063pm3.2i 1340 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)
108 0re 11106 . . . . . 6 0 ∈ ℝ
109 pnfxr 11158 . . . . . 6 +∞ ∈ ℝ*
110 elico2 13302 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
111108, 109, 110mp2an 692 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
112107, 111mpbir 231 . . . 4 1 ∈ (0[,)+∞)
113 cnfld1 21323 . . . . 5 1 = (1r‘ℂfld)
11490, 91, 113ress1r 33191 . . . 4 ((ℂfld ∈ Ring ∧ 1 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 1 = (1r‘(ℂflds (0[,)+∞))))
115102, 112, 89, 114mp3an 1463 . . 3 1 = (1r‘(ℂflds (0[,)+∞)))
116 ringmnd 20154 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
117100, 101, 116mp2b 10 . . . 4 fld ∈ Mnd
118 0e0icopnf 13350 . . . 4 0 ∈ (0[,)+∞)
119 cnfld0 21322 . . . . 5 0 = (0g‘ℂfld)
12090, 91, 119ress0g 18662 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
121117, 118, 89, 120mp3an 1463 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
12253, 58, 64, 69, 87, 93, 96, 99, 115, 121isslmd 33161 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (ℂflds (0[,)+∞)) ∈ SRing ∧ ∀𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))))
1238, 9, 48, 122mpbir3an 1342 1 𝑊 ∈ SLMod
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  cin 3899  wss 3900   class class class wbr 5089  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  +∞cpnf 11135  *cxr 11137   < clt 11138  cle 11139   +𝑒 cxad 13001   ·e cxmu 13002  [,)cico 13239  [,]cicc 13240  Basecbs 17112  s cress 17133  +gcplusg 17153  .rcmulr 17154  Scalarcsca 17156   ·𝑠 cvsca 17157  0gc0g 17335  *𝑠cxrs 17396  Mndcmnd 18634  CMndccmn 19685  1rcur 20092  SRingcsrg 20097  Ringcrg 20144  DivRingcdr 20637  fldccnfld 21284  fldcrefld 21534  SLModcslmd 33159  v cresv 33281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077  ax-mulf 11078  ax-xrssca 32975  ax-xrsvsca 32976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ico 13243  df-icc 13244  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-0g 17337  df-xrs 17398  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-srg 20098  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-drng 20639  df-cnfld 21285  df-refld 21535  df-slmd 33160  df-resv 33282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator