Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0slmod Structured version   Visualization version   GIF version

Theorem xrge0slmod 33376
Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
xrge0slmod.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0slmod.2 𝑊 = (𝐺v (0[,)+∞))
Assertion
Ref Expression
xrge0slmod 𝑊 ∈ SLMod

Proof of Theorem xrge0slmod
Dummy variables 𝑟 𝑞 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0slmod.1 . . . 4 𝐺 = (ℝ*𝑠s (0[,]+∞))
2 xrge0cmn 21426 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
31, 2eqeltri 2837 . . 3 𝐺 ∈ CMnd
4 ovex 7464 . . . 4 (0[,)+∞) ∈ V
5 xrge0slmod.2 . . . . 5 𝑊 = (𝐺v (0[,)+∞))
65resvcmn 33369 . . . 4 ((0[,)+∞) ∈ V → (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd))
74, 6ax-mp 5 . . 3 (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd)
83, 7mpbi 230 . 2 𝑊 ∈ CMnd
9 rge0srg 21456 . 2 (ℂflds (0[,)+∞)) ∈ SRing
10 icossicc 13476 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
11 simplr 769 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,)+∞))
1210, 11sselid 3981 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,]+∞))
13 simprr 773 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ (0[,]+∞))
14 ge0xmulcl 13503 . . . . . . 7 ((𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
1512, 13, 14syl2anc 584 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
16 simprl 771 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑥 ∈ (0[,]+∞))
17 xrge0adddi 33024 . . . . . . 7 ((𝑤 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞)) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
1813, 16, 12, 17syl3anc 1373 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
19 rge0ssre 13496 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
20 simpll 767 . . . . . . . . . 10 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,)+∞))
2119, 20sselid 3981 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ)
2219, 11sselid 3981 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ)
23 rexadd 13274 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2421, 22, 23syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2524oveq1d 7446 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 + 𝑟) ·e 𝑤))
2610, 20sselid 3981 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,]+∞))
27 xrge0adddir 33023 . . . . . . . 8 ((𝑞 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2826, 12, 13, 27syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2925, 28eqtr3d 2779 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
3015, 18, 293jca 1129 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))))
31 rexmul 13313 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3221, 22, 31syl2anc 584 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3332oveq1d 7446 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = ((𝑞 · 𝑟) ·e 𝑤))
3421rexrd 11311 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ*)
3522rexrd 11311 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ*)
36 iccssxr 13470 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3736, 13sselid 3981 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ ℝ*)
38 xmulass 13329 . . . . . . . 8 ((𝑞 ∈ ℝ*𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
3934, 35, 37, 38syl3anc 1373 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
4033, 39eqtr3d 2779 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
41 xmullid 13322 . . . . . . 7 (𝑤 ∈ ℝ* → (1 ·e 𝑤) = 𝑤)
4237, 41syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (1 ·e 𝑤) = 𝑤)
43 xmul02 13310 . . . . . . 7 (𝑤 ∈ ℝ* → (0 ·e 𝑤) = 0)
4437, 43syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (0 ·e 𝑤) = 0)
4540, 42, 443jca 1129 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
4630, 45jca 511 . . . 4 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4746ralrimivva 3202 . . 3 ((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) → ∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4847rgen2 3199 . 2 𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
49 xrge0base 33016 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
501fveq2i 6909 . . . . . 6 (Base‘𝐺) = (Base‘(ℝ*𝑠s (0[,]+∞)))
5149, 50eqtr4i 2768 . . . . 5 (0[,]+∞) = (Base‘𝐺)
525, 51resvbas 33359 . . . 4 ((0[,)+∞) ∈ V → (0[,]+∞) = (Base‘𝑊))
534, 52ax-mp 5 . . 3 (0[,]+∞) = (Base‘𝑊)
54 xrge0plusg 33018 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
551fveq2i 6909 . . . . . 6 (+g𝐺) = (+g‘(ℝ*𝑠s (0[,]+∞)))
5654, 55eqtr4i 2768 . . . . 5 +𝑒 = (+g𝐺)
575, 56resvplusg 33361 . . . 4 ((0[,)+∞) ∈ V → +𝑒 = (+g𝑊))
584, 57ax-mp 5 . . 3 +𝑒 = (+g𝑊)
59 ovex 7464 . . . . . 6 (0[,]+∞) ∈ V
60 ax-xrsvsca 33007 . . . . . . 7 ·e = ( ·𝑠 ‘ℝ*𝑠)
611, 60ressvsca 17388 . . . . . 6 ((0[,]+∞) ∈ V → ·e = ( ·𝑠𝐺))
6259, 61ax-mp 5 . . . . 5 ·e = ( ·𝑠𝐺)
635, 62resvvsca 33363 . . . 4 ((0[,)+∞) ∈ V → ·e = ( ·𝑠𝑊))
644, 63ax-mp 5 . . 3 ·e = ( ·𝑠𝑊)
65 xrge00 33017 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
661fveq2i 6909 . . . . . 6 (0g𝐺) = (0g‘(ℝ*𝑠s (0[,]+∞)))
6765, 66eqtr4i 2768 . . . . 5 0 = (0g𝐺)
685, 67resv0g 33367 . . . 4 ((0[,)+∞) ∈ V → 0 = (0g𝑊))
694, 68ax-mp 5 . . 3 0 = (0g𝑊)
70 df-refld 21623 . . . . . 6 fld = (ℂflds ℝ)
7170oveq1i 7441 . . . . 5 (ℝflds (0[,)+∞)) = ((ℂflds ℝ) ↾s (0[,)+∞))
72 reex 11246 . . . . . 6 ℝ ∈ V
73 ressress 17293 . . . . . 6 ((ℝ ∈ V ∧ (0[,)+∞) ∈ V) → ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞))))
7472, 4, 73mp2an 692 . . . . 5 ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
7571, 74eqtri 2765 . . . 4 (ℝflds (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
76 ax-xrssca 33006 . . . . . . . 8 fld = (Scalar‘ℝ*𝑠)
771, 76resssca 17387 . . . . . . 7 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘𝐺))
7859, 77ax-mp 5 . . . . . 6 fld = (Scalar‘𝐺)
79 rebase 21624 . . . . . 6 ℝ = (Base‘ℝfld)
805, 78, 79resvsca 33356 . . . . 5 ((0[,)+∞) ∈ V → (ℝflds (0[,)+∞)) = (Scalar‘𝑊))
814, 80ax-mp 5 . . . 4 (ℝflds (0[,)+∞)) = (Scalar‘𝑊)
82 incom 4209 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (ℝ ∩ (0[,)+∞))
83 dfss2 3969 . . . . . . 7 ((0[,)+∞) ⊆ ℝ ↔ ((0[,)+∞) ∩ ℝ) = (0[,)+∞))
8419, 83mpbi 230 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (0[,)+∞)
8582, 84eqtr3i 2767 . . . . 5 (ℝ ∩ (0[,)+∞)) = (0[,)+∞)
8685oveq2i 7442 . . . 4 (ℂflds (ℝ ∩ (0[,)+∞))) = (ℂflds (0[,)+∞))
8775, 81, 863eqtr3ri 2774 . . 3 (ℂflds (0[,)+∞)) = (Scalar‘𝑊)
88 ax-resscn 11212 . . . . 5 ℝ ⊆ ℂ
8919, 88sstri 3993 . . . 4 (0[,)+∞) ⊆ ℂ
90 eqid 2737 . . . . 5 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
91 cnfldbas 21368 . . . . 5 ℂ = (Base‘ℂfld)
9290, 91ressbas2 17283 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
9389, 92ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
94 cnfldadd 21370 . . . . 5 + = (+g‘ℂfld)
9590, 94ressplusg 17334 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
964, 95ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
97 cnfldmul 21372 . . . . 5 · = (.r‘ℂfld)
9890, 97ressmulr 17351 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
994, 98ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
100 cndrng 21411 . . . . 5 fld ∈ DivRing
101 drngring 20736 . . . . 5 (ℂfld ∈ DivRing → ℂfld ∈ Ring)
102100, 101ax-mp 5 . . . 4 fld ∈ Ring
103 1re 11261 . . . . . 6 1 ∈ ℝ
104 0le1 11786 . . . . . 6 0 ≤ 1
105 ltpnf 13162 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
106103, 105ax-mp 5 . . . . . 6 1 < +∞
107103, 104, 1063pm3.2i 1340 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)
108 0re 11263 . . . . . 6 0 ∈ ℝ
109 pnfxr 11315 . . . . . 6 +∞ ∈ ℝ*
110 elico2 13451 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
111108, 109, 110mp2an 692 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
112107, 111mpbir 231 . . . 4 1 ∈ (0[,)+∞)
113 cnfld1 21406 . . . . 5 1 = (1r‘ℂfld)
11490, 91, 113ress1r 33238 . . . 4 ((ℂfld ∈ Ring ∧ 1 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 1 = (1r‘(ℂflds (0[,)+∞))))
115102, 112, 89, 114mp3an 1463 . . 3 1 = (1r‘(ℂflds (0[,)+∞)))
116 ringmnd 20240 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
117100, 101, 116mp2b 10 . . . 4 fld ∈ Mnd
118 0e0icopnf 13498 . . . 4 0 ∈ (0[,)+∞)
119 cnfld0 21405 . . . . 5 0 = (0g‘ℂfld)
12090, 91, 119ress0g 18775 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
121117, 118, 89, 120mp3an 1463 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
12253, 58, 64, 69, 87, 93, 96, 99, 115, 121isslmd 33208 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (ℂflds (0[,)+∞)) ∈ SRing ∧ ∀𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))))
1238, 9, 48, 122mpbir3an 1342 1 𝑊 ∈ SLMod
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cin 3950  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296   +𝑒 cxad 13152   ·e cxmu 13153  [,)cico 13389  [,]cicc 13390  Basecbs 17247  s cress 17274  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  *𝑠cxrs 17545  Mndcmnd 18747  CMndccmn 19798  1rcur 20178  SRingcsrg 20183  Ringcrg 20230  DivRingcdr 20729  fldccnfld 21364  fldcrefld 21622  SLModcslmd 33206  v cresv 33350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235  ax-xrssca 33006  ax-xrsvsca 33007
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-icc 13394  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-xrs 17547  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-cnfld 21365  df-refld 21623  df-slmd 33207  df-resv 33351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator