![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > refld | Structured version Visualization version GIF version |
Description: The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
Ref | Expression |
---|---|
refld | ⊢ ℝfld ∈ Field |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubdrg 21533 | . . 3 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
2 | 1 | simpri 485 | . 2 ⊢ ℝfld ∈ DivRing |
3 | df-refld 21530 | . . 3 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
4 | cncrng 21309 | . . . 4 ⊢ ℂfld ∈ CRing | |
5 | 1 | simpli 483 | . . . 4 ⊢ ℝ ∈ (SubRing‘ℂfld) |
6 | eqid 2727 | . . . . 5 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
7 | 6 | subrgcrng 20507 | . . . 4 ⊢ ((ℂfld ∈ CRing ∧ ℝ ∈ (SubRing‘ℂfld)) → (ℂfld ↾s ℝ) ∈ CRing) |
8 | 4, 5, 7 | mp2an 691 | . . 3 ⊢ (ℂfld ↾s ℝ) ∈ CRing |
9 | 3, 8 | eqeltri 2824 | . 2 ⊢ ℝfld ∈ CRing |
10 | isfld 20628 | . 2 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
11 | 2, 9, 10 | mpbir2an 710 | 1 ⊢ ℝfld ∈ Field |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 ℝcr 11131 ↾s cress 17202 CRingccrg 20167 SubRingcsubrg 20499 DivRingcdr 20617 Fieldcfield 20618 ℂfldccnfld 21272 ℝfldcrefld 21529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-subg 19071 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-cring 20169 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-dvr 20333 df-subrng 20476 df-subrg 20501 df-drng 20619 df-field 20620 df-cnfld 21273 df-refld 21530 |
This theorem is referenced by: resrng 21546 recvs 25066 recvsOLD 25067 rrxbase 25309 rrxprds 25310 rrxip 25311 rrxcph 25313 rrxsca 25317 rrx0 25318 reofld 33050 rearchi 33052 ccfldextrr 33326 ccfldsrarelvec 33345 bj-rrdrg 36759 |
Copyright terms: Public domain | W3C validator |