Step | Hyp | Ref
| Expression |
1 | | amgmwlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Fin) |
2 | | amgmwlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) |
3 | 2 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈
ℝ+) |
4 | | amgmwlem.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊:𝐴⟶ℝ+) |
5 | 4 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) ∈
ℝ+) |
6 | 5 | rpred 12772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) ∈ ℝ) |
7 | 3, 6 | rpcxpcld 25887 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)) ∈
ℝ+) |
8 | 7 | relogcld 25778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℝ) |
9 | 8 | recnd 11003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℂ) |
10 | 1, 9 | gsumfsum 20665 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))))) = Σ𝑘 ∈ 𝐴 (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
11 | 9 | negnegd 11323 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
12 | 11 | sumeq2dv 15415 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = Σ𝑘 ∈ 𝐴 (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
13 | 8 | renegcld 11402 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℝ) |
14 | 13 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) ∈ ℂ) |
15 | 1, 14 | fsumneg 15499 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -Σ𝑘 ∈ 𝐴 -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
16 | 3, 6 | logcxpd 25888 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = ((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
17 | 16 | negeqd 11215 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
18 | 17 | sumeq2dv 15415 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
19 | 18 | negeqd 11215 |
. . . . . . . 8
⊢ (𝜑 → -Σ𝑘 ∈ 𝐴 -(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
20 | 5 | rpcnd 12774 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) ∈ ℂ) |
21 | 3 | relogcld 25778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘(𝐹‘𝑘)) ∈ ℝ) |
22 | 21 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘(𝐹‘𝑘)) ∈ ℂ) |
23 | 20, 22 | mulneg2d 11429 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))) = -((𝑊‘𝑘) · (log‘(𝐹‘𝑘)))) |
24 | 23 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -((𝑊‘𝑘) · (log‘(𝐹‘𝑘))) = ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
25 | 24 | sumeq2dv 15415 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
26 | 25 | negeqd 11215 |
. . . . . . . 8
⊢ (𝜑 → -Σ𝑘 ∈ 𝐴 -((𝑊‘𝑘) · (log‘(𝐹‘𝑘))) = -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
27 | 15, 19, 26 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) = -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
28 | 10, 12, 27 | 3eqtr2rd 2785 |
. . . . . 6
⊢ (𝜑 → -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))))) |
29 | | negex 11219 |
. . . . . . . . . . 11
⊢
-(log‘(𝐹‘𝑘)) ∈ V |
30 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ V) |
31 | 4 | feqmptd 6837 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 = (𝑘 ∈ 𝐴 ↦ (𝑊‘𝑘))) |
32 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))) = (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) |
33 | 1, 5, 30, 31, 32 | offval2 7553 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) = (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))))) |
34 | 33 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))))) |
35 | 22 | negcld 11319 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ ℂ) |
36 | 20, 35 | mulcld 10995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))) ∈ ℂ) |
37 | 1, 36 | gsumfsum 20665 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘))))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
38 | 34, 37 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
39 | 38 | negeqd 11215 |
. . . . . 6
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = -Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · -(log‘(𝐹‘𝑘)))) |
40 | | relogf1o 25722 |
. . . . . . . . . 10
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
41 | | f1of 6716 |
. . . . . . . . . 10
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
42 | 40, 41 | ax-mp 5 |
. . . . . . . . 9
⊢ (log
↾
ℝ+):ℝ+⟶ℝ |
43 | | rpre 12738 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
44 | 43 | anim2i 617 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → (𝑥 ∈ ℝ+ ∧ 𝑦 ∈
ℝ)) |
45 | 44 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥 ∈
ℝ+ ∧ 𝑦
∈ ℝ)) |
46 | | rpcxpcl 25831 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ)
→ (𝑥↑𝑐𝑦) ∈
ℝ+) |
47 | 45, 46 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥↑𝑐𝑦) ∈
ℝ+) |
48 | | inidm 4152 |
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
49 | 47, 2, 4, 1, 1, 48 | off 7551 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∘f
↑𝑐𝑊):𝐴⟶ℝ+) |
50 | | fcompt 7005 |
. . . . . . . . 9
⊢ (((log
↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹 ∘f
↑𝑐𝑊):𝐴⟶ℝ+) → ((log
↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊)) = (𝑘 ∈ 𝐴 ↦ ((log ↾
ℝ+)‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘)))) |
51 | 42, 49, 50 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((log ↾
ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊)) = (𝑘 ∈ 𝐴 ↦ ((log ↾
ℝ+)‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘)))) |
52 | 49 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹 ∘f
↑𝑐𝑊)‘𝑘) ∈
ℝ+) |
53 | | fvres 6793 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘f
↑𝑐𝑊)‘𝑘) ∈ ℝ+ → ((log
↾ ℝ+)‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘))) |
54 | 52, 53 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((log ↾
ℝ+)‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘))) |
55 | 2 | ffnd 6601 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝐴) |
56 | 4 | ffnd 6601 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 Fn 𝐴) |
57 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
58 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑊‘𝑘) = (𝑊‘𝑘)) |
59 | 55, 56, 1, 1, 48, 57, 58 | ofval 7544 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹 ∘f
↑𝑐𝑊)‘𝑘) = ((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))) |
60 | 59 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
61 | 54, 60 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((log ↾
ℝ+)‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘)) = (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))) |
62 | 61 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((log ↾
ℝ+)‘((𝐹 ∘f
↑𝑐𝑊)‘𝑘))) = (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))))) |
63 | 51, 62 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((log ↾
ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊)) = (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘))))) |
64 | 63 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊))) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘((𝐹‘𝑘)↑𝑐(𝑊‘𝑘)))))) |
65 | 28, 39, 64 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊)))) |
66 | | amgmwlem.0 |
. . . . . . . . . . . . 13
⊢ 𝑀 =
(mulGrp‘ℂfld) |
67 | 66 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ (𝑀 ↾s (ℂ
∖ {0})) = ((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0})) |
68 | 67 | rpmsubg 20662 |
. . . . . . . . . . 11
⊢
ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖
{0}))) |
69 | | subgsubm 18777 |
. . . . . . . . . . 11
⊢
(ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖ {0})))
→ ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0})))) |
70 | 68, 69 | ax-mp 5 |
. . . . . . . . . 10
⊢
ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0}))) |
71 | | cnring 20620 |
. . . . . . . . . . 11
⊢
ℂfld ∈ Ring |
72 | | cnfldbas 20601 |
. . . . . . . . . . . . 13
⊢ ℂ =
(Base‘ℂfld) |
73 | | cnfld0 20622 |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘ℂfld) |
74 | | cndrng 20627 |
. . . . . . . . . . . . 13
⊢
ℂfld ∈ DivRing |
75 | 72, 73, 74 | drngui 19997 |
. . . . . . . . . . . 12
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
76 | 75, 66 | unitsubm 19912 |
. . . . . . . . . . 11
⊢
(ℂfld ∈ Ring → (ℂ ∖ {0}) ∈
(SubMnd‘𝑀)) |
77 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑀 ↾s (ℂ
∖ {0})) = (𝑀
↾s (ℂ ∖ {0})) |
78 | 77 | subsubm 18455 |
. . . . . . . . . . 11
⊢ ((ℂ
∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈
(SubMnd‘(𝑀
↾s (ℂ ∖ {0}))) ↔ (ℝ+ ∈
(SubMnd‘𝑀) ∧
ℝ+ ⊆ (ℂ ∖ {0})))) |
79 | 71, 76, 78 | mp2b 10 |
. . . . . . . . . 10
⊢
(ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖ {0})))
↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0}))) |
80 | 70, 79 | mpbi 229 |
. . . . . . . . 9
⊢
(ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0})) |
81 | 80 | simpli 484 |
. . . . . . . 8
⊢
ℝ+ ∈ (SubMnd‘𝑀) |
82 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑀 ↾s
ℝ+) = (𝑀
↾s ℝ+) |
83 | 82 | submbas 18453 |
. . . . . . . 8
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ =
(Base‘(𝑀
↾s ℝ+))) |
84 | 81, 83 | ax-mp 5 |
. . . . . . 7
⊢
ℝ+ = (Base‘(𝑀 ↾s
ℝ+)) |
85 | | cnfld1 20623 |
. . . . . . . . 9
⊢ 1 =
(1r‘ℂfld) |
86 | 66, 85 | ringidval 19739 |
. . . . . . . 8
⊢ 1 =
(0g‘𝑀) |
87 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑀) = (0g‘𝑀) |
88 | 82, 87 | subm0 18454 |
. . . . . . . . 9
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → (0g‘𝑀) = (0g‘(𝑀 ↾s
ℝ+))) |
89 | 81, 88 | ax-mp 5 |
. . . . . . . 8
⊢
(0g‘𝑀) = (0g‘(𝑀 ↾s
ℝ+)) |
90 | 86, 89 | eqtri 2766 |
. . . . . . 7
⊢ 1 =
(0g‘(𝑀
↾s ℝ+)) |
91 | | cncrng 20619 |
. . . . . . . . 9
⊢
ℂfld ∈ CRing |
92 | 66 | crngmgp 19791 |
. . . . . . . . 9
⊢
(ℂfld ∈ CRing → 𝑀 ∈ CMnd) |
93 | 91, 92 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ CMnd) |
94 | 82 | submmnd 18452 |
. . . . . . . . 9
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → (𝑀 ↾s ℝ+)
∈ Mnd) |
95 | 81, 94 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ Mnd) |
96 | 82 | subcmn 19438 |
. . . . . . . 8
⊢ ((𝑀 ∈ CMnd ∧ (𝑀 ↾s
ℝ+) ∈ Mnd) → (𝑀 ↾s ℝ+)
∈ CMnd) |
97 | 93, 95, 96 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ CMnd) |
98 | | resubdrg 20813 |
. . . . . . . . . 10
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
99 | 98 | simpli 484 |
. . . . . . . . 9
⊢ ℝ
∈ (SubRing‘ℂfld) |
100 | | df-refld 20810 |
. . . . . . . . . 10
⊢
ℝfld = (ℂfld ↾s
ℝ) |
101 | 100 | subrgring 20027 |
. . . . . . . . 9
⊢ (ℝ
∈ (SubRing‘ℂfld) → ℝfld
∈ Ring) |
102 | 99, 101 | ax-mp 5 |
. . . . . . . 8
⊢
ℝfld ∈ Ring |
103 | | ringmnd 19793 |
. . . . . . . 8
⊢
(ℝfld ∈ Ring → ℝfld ∈
Mnd) |
104 | 102, 103 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ℝfld
∈ Mnd) |
105 | 66 | oveq1i 7285 |
. . . . . . . . . 10
⊢ (𝑀 ↾s
ℝ+) = ((mulGrp‘ℂfld)
↾s ℝ+) |
106 | 105 | reloggim 25754 |
. . . . . . . . 9
⊢ (log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpIso ℝfld) |
107 | | gimghm 18880 |
. . . . . . . . 9
⊢ ((log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpIso ℝfld) → (log ↾ ℝ+) ∈
((𝑀 ↾s
ℝ+) GrpHom ℝfld)) |
108 | 106, 107 | ax-mp 5 |
. . . . . . . 8
⊢ (log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpHom ℝfld) |
109 | | ghmmhm 18844 |
. . . . . . . 8
⊢ ((log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpHom ℝfld) → (log ↾ ℝ+) ∈
((𝑀 ↾s
ℝ+) MndHom ℝfld)) |
110 | 108, 109 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → (log ↾
ℝ+) ∈ ((𝑀 ↾s ℝ+)
MndHom ℝfld)) |
111 | | 1red 10976 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
112 | 49, 1, 111 | fdmfifsupp 9138 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘f
↑𝑐𝑊) finSupp 1) |
113 | 84, 90, 97, 104, 1, 110, 49, 112 | gsummhm 19539 |
. . . . . 6
⊢ (𝜑 → (ℝfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊))) = ((log ↾
ℝ+)‘((𝑀 ↾s ℝ+)
Σg (𝐹 ∘f
↑𝑐𝑊)))) |
114 | | subrgsubg 20030 |
. . . . . . . . . 10
⊢ (ℝ
∈ (SubRing‘ℂfld) → ℝ ∈
(SubGrp‘ℂfld)) |
115 | 99, 114 | ax-mp 5 |
. . . . . . . . 9
⊢ ℝ
∈ (SubGrp‘ℂfld) |
116 | | subgsubm 18777 |
. . . . . . . . 9
⊢ (ℝ
∈ (SubGrp‘ℂfld) → ℝ ∈
(SubMnd‘ℂfld)) |
117 | 115, 116 | ax-mp 5 |
. . . . . . . 8
⊢ ℝ
∈ (SubMnd‘ℂfld) |
118 | 117 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
(SubMnd‘ℂfld)) |
119 | 40, 41 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → (log ↾
ℝ+):ℝ+⟶ℝ) |
120 | | fco 6624 |
. . . . . . . 8
⊢ (((log
↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹 ∘f
↑𝑐𝑊):𝐴⟶ℝ+) → ((log
↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊)):𝐴⟶ℝ) |
121 | 119, 49, 120 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((log ↾
ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊)):𝐴⟶ℝ) |
122 | 1, 118, 121, 100 | gsumsubm 18473 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊))) = (ℝfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊)))) |
123 | 81 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ+ ∈
(SubMnd‘𝑀)) |
124 | 1, 123, 49, 82 | gsumsubm 18473 |
. . . . . . 7
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)) = ((𝑀 ↾s ℝ+)
Σg (𝐹 ∘f
↑𝑐𝑊))) |
125 | 124 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → ((log ↾
ℝ+)‘(𝑀 Σg (𝐹 ∘f
↑𝑐𝑊))) = ((log ↾
ℝ+)‘((𝑀 ↾s ℝ+)
Σg (𝐹 ∘f
↑𝑐𝑊)))) |
126 | 113, 122,
125 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ (𝐹 ∘f
↑𝑐𝑊))) = ((log ↾
ℝ+)‘(𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)))) |
127 | 86, 93, 1, 123, 49, 112 | gsumsubmcl 19520 |
. . . . . 6
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)) ∈
ℝ+) |
128 | | fvres 6793 |
. . . . . 6
⊢ ((𝑀 Σg
(𝐹 ∘f
↑𝑐𝑊)) ∈ ℝ+ → ((log
↾ ℝ+)‘(𝑀 Σg (𝐹 ∘f
↑𝑐𝑊))) = (log‘(𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)))) |
129 | 127, 128 | syl 17 |
. . . . 5
⊢ (𝜑 → ((log ↾
ℝ+)‘(𝑀 Σg (𝐹 ∘f
↑𝑐𝑊))) = (log‘(𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)))) |
130 | 65, 126, 129 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) = (log‘(𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)))) |
131 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑥 ∈
ℝ+) |
132 | 131 | rpcnd 12774 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑥 ∈
ℂ) |
133 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑦 ∈
ℝ+) |
134 | 133 | rpcnd 12774 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ 𝑦 ∈
ℂ) |
135 | 132, 134 | mulcomd 10996 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+))
→ (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
136 | 1, 4, 2, 135 | caofcom 7568 |
. . . . . . . 8
⊢ (𝜑 → (𝑊 ∘f · 𝐹) = (𝐹 ∘f · 𝑊)) |
137 | 136 | oveq2d 7291 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · 𝐹)) = (ℂfld
Σg (𝐹 ∘f · 𝑊))) |
138 | 2 | feqmptd 6837 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
139 | 1, 5, 3, 31, 138 | offval2 7553 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑊 ∘f · 𝐹) = (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · (𝐹‘𝑘)))) |
140 | 139 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · 𝐹)) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · (𝐹‘𝑘))))) |
141 | 5, 3 | rpmulcld 12788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · (𝐹‘𝑘)) ∈
ℝ+) |
142 | 141 | rpcnd 12774 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑊‘𝑘) · (𝐹‘𝑘)) ∈ ℂ) |
143 | 1, 142 | gsumfsum 20665 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((𝑊‘𝑘) · (𝐹‘𝑘)))) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · (𝐹‘𝑘))) |
144 | 140, 143 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · 𝐹)) = Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · (𝐹‘𝑘))) |
145 | | amgmwlem.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≠ ∅) |
146 | 1, 145, 141 | fsumrpcl 15449 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 ((𝑊‘𝑘) · (𝐹‘𝑘)) ∈
ℝ+) |
147 | 144, 146 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · 𝐹)) ∈
ℝ+) |
148 | 137, 147 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg (𝐹 ∘f · 𝑊)) ∈
ℝ+) |
149 | 148 | relogcld 25778 |
. . . . 5
⊢ (𝜑 →
(log‘(ℂfld Σg (𝐹 ∘f · 𝑊))) ∈
ℝ) |
150 | | ringcmn 19820 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
151 | 71, 150 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → ℂfld
∈ CMnd) |
152 | | remulcl 10956 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
153 | 152 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
154 | | rpssre 12737 |
. . . . . . . 8
⊢
ℝ+ ⊆ ℝ |
155 | | fss 6617 |
. . . . . . . 8
⊢ ((𝑊:𝐴⟶ℝ+ ∧
ℝ+ ⊆ ℝ) → 𝑊:𝐴⟶ℝ) |
156 | 4, 154, 155 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → 𝑊:𝐴⟶ℝ) |
157 | 21 | renegcld 11402 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ ℝ) |
158 | 157 | fmpttd 6989 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))):𝐴⟶ℝ) |
159 | 153, 156,
158, 1, 1, 48 | off 7551 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))):𝐴⟶ℝ) |
160 | | 0red 10978 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
161 | 159, 1, 160 | fdmfifsupp 9138 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) finSupp 0) |
162 | 73, 151, 1, 118, 159, 161 | gsumsubmcl 19520 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) ∈ ℝ) |
163 | 154 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ+
⊆ ℝ) |
164 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈
ℝ+) |
165 | 164 | relogcld 25778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
(log‘𝑤) ∈
ℝ) |
166 | 165 | renegcld 11402 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
-(log‘𝑤) ∈
ℝ) |
167 | 166 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)):ℝ+⟶ℝ) |
168 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑎 ∈ ℝ+) |
169 | | ioorp 13157 |
. . . . . . . . . . . 12
⊢
(0(,)+∞) = ℝ+ |
170 | 168, 169 | eleqtrrdi 2850 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑎 ∈ (0(,)+∞)) |
171 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑏 ∈ ℝ+) |
172 | 171, 169 | eleqtrrdi 2850 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → 𝑏 ∈ (0(,)+∞)) |
173 | | iccssioo2 13152 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (0(,)+∞) ∧
𝑏 ∈ (0(,)+∞))
→ (𝑎[,]𝑏) ⊆
(0(,)+∞)) |
174 | 170, 172,
173 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞)) |
175 | 174, 169 | sseqtrdi 3971 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → (𝑎[,]𝑏) ⊆
ℝ+) |
176 | 175 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (𝑎[,]𝑏) ⊆
ℝ+) |
177 | | ioossico 13170 |
. . . . . . . . . 10
⊢
(0(,)+∞) ⊆ (0[,)+∞) |
178 | 169, 177 | eqsstrri 3956 |
. . . . . . . . 9
⊢
ℝ+ ⊆ (0[,)+∞) |
179 | | fss 6617 |
. . . . . . . . 9
⊢ ((𝑊:𝐴⟶ℝ+ ∧
ℝ+ ⊆ (0[,)+∞)) → 𝑊:𝐴⟶(0[,)+∞)) |
180 | 4, 178, 179 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → 𝑊:𝐴⟶(0[,)+∞)) |
181 | | 0lt1 11497 |
. . . . . . . . 9
⊢ 0 <
1 |
182 | | amgmwlem.5 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg 𝑊) = 1) |
183 | 181, 182 | breqtrrid 5112 |
. . . . . . . 8
⊢ (𝜑 → 0 <
(ℂfld Σg 𝑊)) |
184 | | logccv 25818 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+ ∧ 𝑥
< 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
185 | 184 | 3adant1 1129 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
186 | | elioore 13109 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (0(,)1) → 𝑡 ∈
ℝ) |
187 | 186 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ) |
188 | | simp21 1205 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+) |
189 | 188 | relogcld 25778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈
ℝ) |
190 | 187, 189 | remulcld 11005 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ) |
191 | | 1red 10976 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (0(,)1) → 1 ∈
ℝ) |
192 | 191, 186 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (0(,)1) → (1
− 𝑡) ∈
ℝ) |
193 | 192 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℝ) |
194 | | simp22 1206 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+) |
195 | 194 | relogcld 25778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈
ℝ) |
196 | 193, 195 | remulcld 11005 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈
ℝ) |
197 | 190, 196 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ) |
198 | | eliooord 13138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (0(,)1) → (0 <
𝑡 ∧ 𝑡 < 1)) |
199 | 198 | simpld 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (0(,)1) → 0 <
𝑡) |
200 | 186, 199 | elrpd 12769 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (0(,)1) → 𝑡 ∈
ℝ+) |
201 | 200 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ+) |
202 | 201, 188 | rpmulcld 12788 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · 𝑥) ∈
ℝ+) |
203 | | 0red 10978 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (0(,)1) → 0 ∈
ℝ) |
204 | 198 | simprd 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ (0(,)1) → 𝑡 < 1) |
205 | | 1m0e1 12094 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1
− 0) = 1 |
206 | 204, 205 | breqtrrdi 5116 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (0(,)1) → 𝑡 < (1 −
0)) |
207 | 186, 191,
203, 206 | ltsub13d 11581 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (0(,)1) → 0 < (1
− 𝑡)) |
208 | 192, 207 | elrpd 12769 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (0(,)1) → (1
− 𝑡) ∈
ℝ+) |
209 | 208 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℝ+) |
210 | 209, 194 | rpmulcld 12788 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · 𝑦) ∈
ℝ+) |
211 | | rpaddcl 12752 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 · 𝑥) ∈ ℝ+ ∧ ((1
− 𝑡) · 𝑦) ∈ ℝ+)
→ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈
ℝ+) |
212 | 202, 210,
211 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈
ℝ+) |
213 | 212 | relogcld 25778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ) |
214 | 197, 213 | ltnegd 11553 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))) |
215 | 185, 214 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))) |
216 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) = (𝑤 ∈ ℝ+
↦ -(log‘𝑤))) |
217 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
218 | 217 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
219 | 218 | negeqd 11215 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
220 | | negex 11219 |
. . . . . . . . . . . 12
⊢
-(log‘((𝑡
· 𝑥) + ((1 −
𝑡) · 𝑦))) ∈ V |
221 | 220 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V) |
222 | 216, 219,
212, 221 | fvmptd 6882 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
223 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥)) |
224 | 223 | negeqd 11215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥)) |
225 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℝ+
↦ -(log‘𝑤)) =
(𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) |
226 | | negex 11219 |
. . . . . . . . . . . . . . . 16
⊢
-(log‘𝑤)
∈ V |
227 | 224, 225,
226 | fvmpt3i 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥)) |
228 | 188, 227 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥) = -(log‘𝑥)) |
229 | 228 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥))) |
230 | 187 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ) |
231 | 189 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈
ℂ) |
232 | 230, 231 | mulneg2d 11429 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥))) |
233 | 229, 232 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥))) |
234 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦)) |
235 | 234 | negeqd 11215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦)) |
236 | 235, 225,
226 | fvmpt3i 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦)) |
237 | 194, 236 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦) = -(log‘𝑦)) |
238 | 237 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦))) |
239 | 209 | rpcnd 12774 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℂ) |
240 | 195 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈
ℂ) |
241 | 239, 240 | mulneg2d 11429 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦))) |
242 | 238, 241 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦))) |
243 | 233, 242 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦)))) |
244 | 190 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ) |
245 | 196 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈
ℂ) |
246 | 244, 245 | negdid 11345 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦)))) |
247 | 243, 246 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))) |
248 | 215, 222,
247 | 3brtr4d 5106 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)))) |
249 | 163, 167,
176, 248 | scvxcvx 26135 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+
∧ 𝑠 ∈ (0[,]1)))
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑣)))) |
250 | 163, 167,
176, 1, 180, 2, 183, 249 | jensen 26138 |
. . . . . . 7
⊢ (𝜑 → (((ℂfld
Σg (𝑊 ∘f · 𝐹)) / (ℂfld
Σg 𝑊)) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘f · 𝐹)) / (ℂfld
Σg 𝑊))) ≤ ((ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) /
(ℂfld Σg 𝑊)))) |
251 | 250 | simprd 496 |
. . . . . 6
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘f · 𝐹)) / (ℂfld
Σg 𝑊))) ≤ ((ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) /
(ℂfld Σg 𝑊))) |
252 | 182 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘f · 𝐹)) / (ℂfld
Σg 𝑊)) = ((ℂfld
Σg (𝑊 ∘f · 𝐹)) / 1)) |
253 | 252 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘f · 𝐹)) / (ℂfld
Σg 𝑊))) = ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘f · 𝐹)) / 1))) |
254 | 147 | rpcnd 12774 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · 𝐹)) ∈
ℂ) |
255 | 254 | div1d 11743 |
. . . . . . . 8
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘f · 𝐹)) / 1) = (ℂfld
Σg (𝑊 ∘f · 𝐹))) |
256 | 255 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘f · 𝐹)) / 1)) = ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘f · 𝐹)))) |
257 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑤 = (ℂfld
Σg (𝑊 ∘f · 𝐹)) → (log‘𝑤) =
(log‘(ℂfld Σg (𝑊 ∘f · 𝐹)))) |
258 | 257 | negeqd 11215 |
. . . . . . . . . 10
⊢ (𝑤 = (ℂfld
Σg (𝑊 ∘f · 𝐹)) → -(log‘𝑤) =
-(log‘(ℂfld Σg (𝑊 ∘f ·
𝐹)))) |
259 | 258, 225,
226 | fvmpt3i 6880 |
. . . . . . . . 9
⊢
((ℂfld Σg (𝑊 ∘f · 𝐹)) ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘f · 𝐹))) =
-(log‘(ℂfld Σg (𝑊 ∘f ·
𝐹)))) |
260 | 147, 259 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘f · 𝐹))) =
-(log‘(ℂfld Σg (𝑊 ∘f ·
𝐹)))) |
261 | 137 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝜑 →
(log‘(ℂfld Σg (𝑊 ∘f · 𝐹))) =
(log‘(ℂfld Σg (𝐹 ∘f · 𝑊)))) |
262 | 261 | negeqd 11215 |
. . . . . . . 8
⊢ (𝜑 →
-(log‘(ℂfld Σg (𝑊 ∘f ·
𝐹))) =
-(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊)))) |
263 | 260, 262 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘(ℂfld
Σg (𝑊 ∘f · 𝐹))) =
-(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊)))) |
264 | 253, 256,
263 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg (𝑊 ∘f · 𝐹)) / (ℂfld
Σg 𝑊))) = -(log‘(ℂfld
Σg (𝐹 ∘f · 𝑊)))) |
265 | 182 | oveq2d 7291 |
. . . . . . 7
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) /
(ℂfld Σg 𝑊)) = ((ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) /
1)) |
266 | | ringmnd 19793 |
. . . . . . . . . . 11
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
267 | 71, 266 | ax-mp 5 |
. . . . . . . . . 10
⊢
ℂfld ∈ Mnd |
268 | 72 | submid 18449 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Mnd → ℂ ∈
(SubMnd‘ℂfld)) |
269 | 267, 268 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
(SubMnd‘ℂfld)) |
270 | | mulcl 10955 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
271 | 270 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
272 | | rpcn 12740 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
273 | 272 | ssriv 3925 |
. . . . . . . . . . . 12
⊢
ℝ+ ⊆ ℂ |
274 | 273 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ+
⊆ ℂ) |
275 | 4, 274 | fssd 6618 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊:𝐴⟶ℂ) |
276 | 165 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
(log‘𝑤) ∈
ℂ) |
277 | 276 | negcld 11319 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
-(log‘𝑤) ∈
ℂ) |
278 | 277 | fmpttd 6989 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)):ℝ+⟶ℂ) |
279 | | fco 6624 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ ℝ+
↦ -(log‘𝑤)):ℝ+⟶ℂ ∧
𝐹:𝐴⟶ℝ+) → ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹):𝐴⟶ℂ) |
280 | 278, 2, 279 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) ∘
𝐹):𝐴⟶ℂ) |
281 | 271, 275,
280, 1, 1, 48 | off 7551 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹)):𝐴⟶ℂ) |
282 | 281, 1, 160 | fdmfifsupp 9138 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹)) finSupp
0) |
283 | 73, 151, 1, 269, 281, 282 | gsumsubmcl 19520 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) ∈
ℂ) |
284 | 283 | div1d 11743 |
. . . . . . 7
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) / 1) =
(ℂfld Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹)))) |
285 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) = (𝑤 ∈ ℝ+
↦ -(log‘𝑤))) |
286 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐹‘𝑘) → (log‘𝑤) = (log‘(𝐹‘𝑘))) |
287 | 286 | negeqd 11215 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐹‘𝑘) → -(log‘𝑤) = -(log‘(𝐹‘𝑘))) |
288 | 3, 138, 285, 287 | fmptco 7001 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) ∘
𝐹) = (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) |
289 | 288 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹)) = (𝑊 ∘f ·
(𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) |
290 | 289 | oveq2d 7291 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) =
(ℂfld Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
291 | 265, 284,
290 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → ((ℂfld
Σg (𝑊 ∘f · ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))
∘ 𝐹))) /
(ℂfld Σg 𝑊)) = (ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
292 | 251, 264,
291 | 3brtr3d 5105 |
. . . . 5
⊢ (𝜑 →
-(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊))) ≤
(ℂfld Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
293 | 149, 162,
292 | lenegcon1d 11557 |
. . . 4
⊢ (𝜑 → -(ℂfld
Σg (𝑊 ∘f · (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))))) ≤ (log‘(ℂfld
Σg (𝐹 ∘f · 𝑊)))) |
294 | 130, 293 | eqbrtrrd 5098 |
. . 3
⊢ (𝜑 → (log‘(𝑀 Σg
(𝐹 ∘f
↑𝑐𝑊))) ≤ (log‘(ℂfld
Σg (𝐹 ∘f · 𝑊)))) |
295 | 127 | relogcld 25778 |
. . . 4
⊢ (𝜑 → (log‘(𝑀 Σg
(𝐹 ∘f
↑𝑐𝑊))) ∈ ℝ) |
296 | | efle 15827 |
. . . 4
⊢
(((log‘(𝑀
Σg (𝐹 ∘f
↑𝑐𝑊))) ∈ ℝ ∧
(log‘(ℂfld Σg (𝐹 ∘f · 𝑊))) ∈ ℝ) →
((log‘(𝑀
Σg (𝐹 ∘f
↑𝑐𝑊))) ≤ (log‘(ℂfld
Σg (𝐹 ∘f · 𝑊))) ↔
(exp‘(log‘(𝑀
Σg (𝐹 ∘f
↑𝑐𝑊)))) ≤
(exp‘(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊)))))) |
297 | 295, 149,
296 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((log‘(𝑀 Σg
(𝐹 ∘f
↑𝑐𝑊))) ≤ (log‘(ℂfld
Σg (𝐹 ∘f · 𝑊))) ↔
(exp‘(log‘(𝑀
Σg (𝐹 ∘f
↑𝑐𝑊)))) ≤
(exp‘(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊)))))) |
298 | 294, 297 | mpbid 231 |
. 2
⊢ (𝜑 →
(exp‘(log‘(𝑀
Σg (𝐹 ∘f
↑𝑐𝑊)))) ≤
(exp‘(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊))))) |
299 | 127 | reeflogd 25779 |
. . 3
⊢ (𝜑 →
(exp‘(log‘(𝑀
Σg (𝐹 ∘f
↑𝑐𝑊)))) = (𝑀 Σg (𝐹 ∘f
↑𝑐𝑊))) |
300 | 299 | eqcomd 2744 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)) = (exp‘(log‘(𝑀 Σg
(𝐹 ∘f
↑𝑐𝑊))))) |
301 | 148 | reeflogd 25779 |
. . 3
⊢ (𝜑 →
(exp‘(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊)))) =
(ℂfld Σg (𝐹 ∘f · 𝑊))) |
302 | 301 | eqcomd 2744 |
. 2
⊢ (𝜑 → (ℂfld
Σg (𝐹 ∘f · 𝑊)) =
(exp‘(log‘(ℂfld Σg (𝐹 ∘f ·
𝑊))))) |
303 | 298, 300,
302 | 3brtr4d 5106 |
1
⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f
↑𝑐𝑊)) ≤ (ℂfld
Σg (𝐹 ∘f · 𝑊))) |