Mathbox for Kunhao Zheng < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmwlem Structured version   Visualization version   GIF version

Theorem amgmwlem 43654
 Description: Weighted version of amgmlem 25168. (Contributed by Kunhao Zheng, 19-Jun-2021.)
Hypotheses
Ref Expression
amgmwlem.0 𝑀 = (mulGrp‘ℂfld)
amgmwlem.1 (𝜑𝐴 ∈ Fin)
amgmwlem.2 (𝜑𝐴 ≠ ∅)
amgmwlem.3 (𝜑𝐹:𝐴⟶ℝ+)
amgmwlem.4 (𝜑𝑊:𝐴⟶ℝ+)
amgmwlem.5 (𝜑 → (ℂfld Σg 𝑊) = 1)
Assertion
Ref Expression
amgmwlem (𝜑 → (𝑀 Σg (𝐹𝑓𝑐𝑊)) ≤ (ℂfld Σg (𝐹𝑓 · 𝑊)))

Proof of Theorem amgmwlem
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 𝑘 𝑦 𝑤 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmwlem.1 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
2 amgmwlem.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
32ffvelrnda 6623 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
4 amgmwlem.4 . . . . . . . . . . . . 13 (𝜑𝑊:𝐴⟶ℝ+)
54ffvelrnda 6623 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ+)
65rpred 12181 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ)
73, 6rpcxpcld 24915 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(𝑊𝑘)) ∈ ℝ+)
87relogcld 24806 . . . . . . . . 9 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
98recnd 10405 . . . . . . . 8 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
101, 9gsumfsum 20209 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
119negnegd 10725 . . . . . . . 8 ((𝜑𝑘𝐴) → --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
1211sumeq2dv 14841 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
138renegcld 10802 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
1413recnd 10405 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
151, 14fsumneg 14923 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
163, 6logcxpd 24916 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = ((𝑊𝑘) · (log‘(𝐹𝑘))))
1716negeqd 10616 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
1817sumeq2dv 14841 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
1918negeqd 10616 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
205rpcnd 12183 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℂ)
213relogcld 24806 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
2221recnd 10405 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
2320, 22mulneg2d 10829 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
2423eqcomd 2784 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -((𝑊𝑘) · (log‘(𝐹𝑘))) = ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2524sumeq2dv 14841 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2625negeqd 10616 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2715, 19, 263eqtrd 2818 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2810, 12, 273eqtr2rd 2821 . . . . . 6 (𝜑 → -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
29 negex 10620 . . . . . . . . . . 11 -(log‘(𝐹𝑘)) ∈ V
3029a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
314feqmptd 6509 . . . . . . . . . 10 (𝜑𝑊 = (𝑘𝐴 ↦ (𝑊𝑘)))
32 eqidd 2779 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
331, 5, 30, 31, 32offval2 7191 . . . . . . . . 9 (𝜑 → (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘)))))
3433oveq2d 6938 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))))
3522negcld 10721 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
3620, 35mulcld 10397 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) ∈ ℂ)
371, 36gsumfsum 20209 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3834, 37eqtrd 2814 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3938negeqd 10616 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
40 relogf1o 24750 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
41 f1of 6391 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
4240, 41ax-mp 5 . . . . . . . . 9 (log ↾ ℝ+):ℝ+⟶ℝ
43 rpre 12145 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4443anim2i 610 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
4544adantl 475 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
46 rpcxpcl 24859 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥𝑐𝑦) ∈ ℝ+)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥𝑐𝑦) ∈ ℝ+)
48 inidm 4043 . . . . . . . . . 10 (𝐴𝐴) = 𝐴
4947, 2, 4, 1, 1, 48off 7189 . . . . . . . . 9 (𝜑 → (𝐹𝑓𝑐𝑊):𝐴⟶ℝ+)
50 fcompt 6665 . . . . . . . . 9 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹𝑓𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹𝑓𝑐𝑊)‘𝑘))))
5142, 49, 50sylancr 581 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹𝑓𝑐𝑊)‘𝑘))))
5249ffvelrnda 6623 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹𝑓𝑐𝑊)‘𝑘) ∈ ℝ+)
53 fvres 6465 . . . . . . . . . . 11 (((𝐹𝑓𝑐𝑊)‘𝑘) ∈ ℝ+ → ((log ↾ ℝ+)‘((𝐹𝑓𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑓𝑐𝑊)‘𝑘)))
5452, 53syl 17 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹𝑓𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑓𝑐𝑊)‘𝑘)))
552ffnd 6292 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝐴)
564ffnd 6292 . . . . . . . . . . . 12 (𝜑𝑊 Fn 𝐴)
57 eqidd 2779 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
58 eqidd 2779 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) = (𝑊𝑘))
5955, 56, 1, 1, 48, 57, 58ofval 7183 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹𝑓𝑐𝑊)‘𝑘) = ((𝐹𝑘)↑𝑐(𝑊𝑘)))
6059fveq2d 6450 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘((𝐹𝑓𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6154, 60eqtrd 2814 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹𝑓𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6261mpteq2dva 4979 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹𝑓𝑐𝑊)‘𝑘))) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6351, 62eqtrd 2814 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊)) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6463oveq2d 6938 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
6528, 39, 643eqtr4d 2824 . . . . 5 (𝜑 → -(ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊))))
66 amgmwlem.0 . . . . . . . . . . . . 13 𝑀 = (mulGrp‘ℂfld)
6766oveq1i 6932 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
6867rpmsubg 20206 . . . . . . . . . . 11 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
69 subgsubm 18000 . . . . . . . . . . 11 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
7068, 69ax-mp 5 . . . . . . . . . 10 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
71 cnring 20164 . . . . . . . . . . 11 fld ∈ Ring
72 cnfldbas 20146 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
73 cnfld0 20166 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
74 cndrng 20171 . . . . . . . . . . . . 13 fld ∈ DivRing
7572, 73, 74drngui 19145 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
7675, 66unitsubm 19057 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
77 eqid 2778 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
7877subsubm 17743 . . . . . . . . . . 11 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
7971, 76, 78mp2b 10 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
8070, 79mpbi 222 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
8180simpli 478 . . . . . . . 8 + ∈ (SubMnd‘𝑀)
82 eqid 2778 . . . . . . . . 9 (𝑀s+) = (𝑀s+)
8382submbas 17741 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
8481, 83ax-mp 5 . . . . . . 7 + = (Base‘(𝑀s+))
85 cnfld1 20167 . . . . . . . . 9 1 = (1r‘ℂfld)
8666, 85ringidval 18890 . . . . . . . 8 1 = (0g𝑀)
87 eqid 2778 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
8882, 87subm0 17742 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
8981, 88ax-mp 5 . . . . . . . 8 (0g𝑀) = (0g‘(𝑀s+))
9086, 89eqtri 2802 . . . . . . 7 1 = (0g‘(𝑀s+))
91 cncrng 20163 . . . . . . . . 9 fld ∈ CRing
9266crngmgp 18942 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
9391, 92mp1i 13 . . . . . . . 8 (𝜑𝑀 ∈ CMnd)
9482submmnd 17740 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
9581, 94mp1i 13 . . . . . . . 8 (𝜑 → (𝑀s+) ∈ Mnd)
9682subcmn 18628 . . . . . . . 8 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
9793, 95, 96syl2anc 579 . . . . . . 7 (𝜑 → (𝑀s+) ∈ CMnd)
98 resubdrg 20351 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
9998simpli 478 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
100 df-refld 20348 . . . . . . . . . 10 fld = (ℂflds ℝ)
101100subrgring 19175 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
10299, 101ax-mp 5 . . . . . . . 8 fld ∈ Ring
103 ringmnd 18943 . . . . . . . 8 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
104102, 103mp1i 13 . . . . . . 7 (𝜑 → ℝfld ∈ Mnd)
10566oveq1i 6932 . . . . . . . . . 10 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
106105reloggim 24782 . . . . . . . . 9 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
107 gimghm 18090 . . . . . . . . 9 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
108106, 107ax-mp 5 . . . . . . . 8 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
109 ghmmhm 18054 . . . . . . . 8 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
110108, 109mp1i 13 . . . . . . 7 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
111 1red 10377 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
11249, 1, 111fdmfifsupp 8573 . . . . . . 7 (𝜑 → (𝐹𝑓𝑐𝑊) finSupp 1)
11384, 90, 97, 104, 1, 110, 49, 112gsummhm 18724 . . . . . 6 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹𝑓𝑐𝑊))))
114 subrgsubg 19178 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
11599, 114ax-mp 5 . . . . . . . . 9 ℝ ∈ (SubGrp‘ℂfld)
116 subgsubm 18000 . . . . . . . . 9 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
117115, 116ax-mp 5 . . . . . . . 8 ℝ ∈ (SubMnd‘ℂfld)
118117a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
11940, 41mp1i 13 . . . . . . . 8 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
120 fco 6308 . . . . . . . 8 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹𝑓𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊)):𝐴⟶ℝ)
121119, 49, 120syl2anc 579 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊)):𝐴⟶ℝ)
1221, 118, 121, 100gsumsubm 17759 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊))) = (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊))))
12381a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1241, 123, 49, 82gsumsubm 17759 . . . . . . 7 (𝜑 → (𝑀 Σg (𝐹𝑓𝑐𝑊)) = ((𝑀s+) Σg (𝐹𝑓𝑐𝑊)))
125124fveq2d 6450 . . . . . 6 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹𝑓𝑐𝑊))))
126113, 122, 1253eqtr4d 2824 . . . . 5 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹𝑓𝑐𝑊))) = ((log ↾ ℝ+)‘(𝑀 Σg (𝐹𝑓𝑐𝑊))))
12786, 93, 1, 123, 49, 112gsumsubmcl 18705 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹𝑓𝑐𝑊)) ∈ ℝ+)
128 fvres 6465 . . . . . 6 ((𝑀 Σg (𝐹𝑓𝑐𝑊)) ∈ ℝ+ → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) = (log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))))
129127, 128syl 17 . . . . 5 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) = (log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))))
13065, 126, 1293eqtrd 2818 . . . 4 (𝜑 → -(ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))))
131 simprl 761 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
132131rpcnd 12183 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℂ)
133 simprr 763 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
134133rpcnd 12183 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℂ)
135132, 134mulcomd 10398 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
1361, 4, 2, 135caofcom 7206 . . . . . . . 8 (𝜑 → (𝑊𝑓 · 𝐹) = (𝐹𝑓 · 𝑊))
137136oveq2d 6938 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊𝑓 · 𝐹)) = (ℂfld Σg (𝐹𝑓 · 𝑊)))
1382feqmptd 6509 . . . . . . . . . . 11 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1391, 5, 3, 31, 138offval2 7191 . . . . . . . . . 10 (𝜑 → (𝑊𝑓 · 𝐹) = (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘))))
140139oveq2d 6938 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊𝑓 · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))))
1415, 3rpmulcld 12197 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
142141rpcnd 12183 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℂ)
1431, 142gsumfsum 20209 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
144140, 143eqtrd 2814 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊𝑓 · 𝐹)) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
145 amgmwlem.2 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
1461, 145, 141fsumrpcl 14875 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
147144, 146eqeltrd 2859 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊𝑓 · 𝐹)) ∈ ℝ+)
148137, 147eqeltrrd 2860 . . . . . 6 (𝜑 → (ℂfld Σg (𝐹𝑓 · 𝑊)) ∈ ℝ+)
149148relogcld 24806 . . . . 5 (𝜑 → (log‘(ℂfld Σg (𝐹𝑓 · 𝑊))) ∈ ℝ)
150 ringcmn 18968 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
15171, 150mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
152 remulcl 10357 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
153152adantl 475 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
154 rpssre 12144 . . . . . . . 8 + ⊆ ℝ
155 fss 6304 . . . . . . . 8 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝑊:𝐴⟶ℝ)
1564, 154, 155sylancl 580 . . . . . . 7 (𝜑𝑊:𝐴⟶ℝ)
15721renegcld 10802 . . . . . . . 8 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
158157fmpttd 6649 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
159153, 156, 158, 1, 1, 48off 7189 . . . . . 6 (𝜑 → (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))):𝐴⟶ℝ)
160 0red 10380 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
161159, 1, 160fdmfifsupp 8573 . . . . . 6 (𝜑 → (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) finSupp 0)
16273, 151, 1, 118, 159, 161gsumsubmcl 18705 . . . . 5 (𝜑 → (ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ∈ ℝ)
163154a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
164 simpr 479 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
165164relogcld 24806 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
166165renegcld 10802 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
167166fmpttd 6649 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
168 simpl 476 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
169 ioorp 12563 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
170168, 169syl6eleqr 2870 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ (0(,)+∞))
171 simpr 479 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
172171, 169syl6eleqr 2870 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ (0(,)+∞))
173 iccssioo2 12558 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
174170, 172, 173syl2anc 579 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
175174, 169syl6sseq 3870 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
176175adantl 475 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
177 ioossico 12575 . . . . . . . . . 10 (0(,)+∞) ⊆ (0[,)+∞)
178169, 177eqsstr3i 3855 . . . . . . . . 9 + ⊆ (0[,)+∞)
179 fss 6304 . . . . . . . . 9 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ (0[,)+∞)) → 𝑊:𝐴⟶(0[,)+∞))
1804, 178, 179sylancl 580 . . . . . . . 8 (𝜑𝑊:𝐴⟶(0[,)+∞))
181 0lt1 10897 . . . . . . . . 9 0 < 1
182 amgmwlem.5 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝑊) = 1)
183181, 182syl5breqr 4924 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg 𝑊))
184 logccv 24846 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1851843adant1 1121 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
186 elioore 12517 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
1871863ad2ant3 1126 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
188 simp21 1220 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
189188relogcld 24806 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
190187, 189remulcld 10407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
191 1red 10377 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 1 ∈ ℝ)
192191, 186resubcld 10803 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ)
1931923ad2ant3 1126 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
194 simp22 1221 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
195194relogcld 24806 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
196193, 195remulcld 10407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
197190, 196readdcld 10406 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
198 eliooord 12545 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
199198simpld 490 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < 𝑡)
200186, 199elrpd 12178 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ+)
2012003ad2ant3 1126 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ+)
202201, 188rpmulcld 12197 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · 𝑥) ∈ ℝ+)
203 0red 10380 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 0 ∈ ℝ)
204198simprd 491 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (0(,)1) → 𝑡 < 1)
205 1m0e1 11503 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
206204, 205syl6breqr 4928 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 𝑡 < (1 − 0))
207186, 191, 203, 206ltsub13d 10981 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < (1 − 𝑡))
208192, 207elrpd 12178 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ+)
2092083ad2ant3 1126 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ+)
210209, 194rpmulcld 12197 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ+)
211 rpaddcl 12161 . . . . . . . . . . . . . 14 (((𝑡 · 𝑥) ∈ ℝ+ ∧ ((1 − 𝑡) · 𝑦) ∈ ℝ+) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
212202, 210, 211syl2anc 579 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
213212relogcld 24806 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
214197, 213ltnegd 10953 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
215185, 214mpbid 224 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
216 eqidd 2779 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
217 fveq2 6446 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
218217adantl 475 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
219218negeqd 10616 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
220 negex 10620 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
221220a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V)
222216, 219, 212, 221fvmptd 6548 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
223 fveq2 6446 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
224223negeqd 10616 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
225 eqid 2778 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
226 negex 10620 . . . . . . . . . . . . . . . 16 -(log‘𝑤) ∈ V
227224, 225, 226fvmpt3i 6547 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
228188, 227syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
229228oveq2d 6938 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
230187recnd 10405 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
231189recnd 10405 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
232230, 231mulneg2d 10829 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
233229, 232eqtrd 2814 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
234 fveq2 6446 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
235234negeqd 10616 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
236235, 225, 226fvmpt3i 6547 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
237194, 236syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
238237oveq2d 6938 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
239209rpcnd 12183 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
240195recnd 10405 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
241239, 240mulneg2d 10829 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
242238, 241eqtrd 2814 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
243233, 242oveq12d 6940 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
244190recnd 10405 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
245196recnd 10405 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
246244, 245negdid 10747 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
247243, 246eqtr4d 2817 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
248215, 222, 2473brtr4d 4918 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
249163, 167, 176, 248scvxcvx 25164 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
250163, 167, 176, 1, 180, 2, 183, 249jensen 25167 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑊𝑓 · 𝐹)) / (ℂfld Σg 𝑊)) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊𝑓 · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊))))
251250simprd 491 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊𝑓 · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)))
252182oveq2d 6938 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊𝑓 · 𝐹)) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊𝑓 · 𝐹)) / 1))
253252fveq2d 6450 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊𝑓 · 𝐹)) / (ℂfld Σg 𝑊))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊𝑓 · 𝐹)) / 1)))
254147rpcnd 12183 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊𝑓 · 𝐹)) ∈ ℂ)
255254div1d 11143 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊𝑓 · 𝐹)) / 1) = (ℂfld Σg (𝑊𝑓 · 𝐹)))
256255fveq2d 6450 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊𝑓 · 𝐹)) / 1)) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊𝑓 · 𝐹))))
257 fveq2 6446 . . . . . . . . . . 11 (𝑤 = (ℂfld Σg (𝑊𝑓 · 𝐹)) → (log‘𝑤) = (log‘(ℂfld Σg (𝑊𝑓 · 𝐹))))
258257negeqd 10616 . . . . . . . . . 10 (𝑤 = (ℂfld Σg (𝑊𝑓 · 𝐹)) → -(log‘𝑤) = -(log‘(ℂfld Σg (𝑊𝑓 · 𝐹))))
259258, 225, 226fvmpt3i 6547 . . . . . . . . 9 ((ℂfld Σg (𝑊𝑓 · 𝐹)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊𝑓 · 𝐹))) = -(log‘(ℂfld Σg (𝑊𝑓 · 𝐹))))
260147, 259syl 17 . . . . . . . 8 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊𝑓 · 𝐹))) = -(log‘(ℂfld Σg (𝑊𝑓 · 𝐹))))
261137fveq2d 6450 . . . . . . . . 9 (𝜑 → (log‘(ℂfld Σg (𝑊𝑓 · 𝐹))) = (log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))
262261negeqd 10616 . . . . . . . 8 (𝜑 → -(log‘(ℂfld Σg (𝑊𝑓 · 𝐹))) = -(log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))
263260, 262eqtrd 2814 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊𝑓 · 𝐹))) = -(log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))
264253, 256, 2633eqtrd 2818 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊𝑓 · 𝐹)) / (ℂfld Σg 𝑊))) = -(log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))
265182oveq2d 6938 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1))
266 ringmnd 18943 . . . . . . . . . . 11 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
26771, 266ax-mp 5 . . . . . . . . . 10 fld ∈ Mnd
26872submid 17737 . . . . . . . . . 10 (ℂfld ∈ Mnd → ℂ ∈ (SubMnd‘ℂfld))
269267, 268mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (SubMnd‘ℂfld))
270 mulcl 10356 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
271270adantl 475 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
272 rpcn 12149 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
273272ssriv 3825 . . . . . . . . . . . 12 + ⊆ ℂ
274273a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ+ ⊆ ℂ)
2754, 274fssd 6305 . . . . . . . . . 10 (𝜑𝑊:𝐴⟶ℂ)
276165recnd 10405 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℂ)
277276negcld 10721 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℂ)
278277fmpttd 6649 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ)
279 fco 6308 . . . . . . . . . . 11 (((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ ∧ 𝐹:𝐴⟶ℝ+) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
280278, 2, 279syl2anc 579 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
281271, 275, 280, 1, 1, 48off 7189 . . . . . . . . 9 (𝜑 → (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)):𝐴⟶ℂ)
282281, 1, 160fdmfifsupp 8573 . . . . . . . . 9 (𝜑 → (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) finSupp 0)
28373, 151, 1, 269, 281, 282gsumsubmcl 18705 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) ∈ ℂ)
284283div1d 11143 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1) = (ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))))
285 eqidd 2779 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
286 fveq2 6446 . . . . . . . . . . 11 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
287286negeqd 10616 . . . . . . . . . 10 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
2883, 138, 285, 287fmptco 6661 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
289288oveq2d 6938 . . . . . . . 8 (𝜑 → (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))))
290289oveq2d 6938 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
291265, 284, 2903eqtrd 2818 . . . . . 6 (𝜑 → ((ℂfld Σg (𝑊𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = (ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
292251, 264, 2913brtr3d 4917 . . . . 5 (𝜑 → -(log‘(ℂfld Σg (𝐹𝑓 · 𝑊))) ≤ (ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
293149, 162, 292lenegcon1d 10957 . . . 4 (𝜑 → -(ℂfld Σg (𝑊𝑓 · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ≤ (log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))
294130, 293eqbrtrrd 4910 . . 3 (𝜑 → (log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))
295127relogcld 24806 . . . 4 (𝜑 → (log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) ∈ ℝ)
296 efle 15250 . . . 4 (((log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) ∈ ℝ ∧ (log‘(ℂfld Σg (𝐹𝑓 · 𝑊))) ∈ ℝ) → ((log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹𝑓 · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹𝑓𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))))
297295, 149, 296syl2anc 579 . . 3 (𝜑 → ((log‘(𝑀 Σg (𝐹𝑓𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹𝑓 · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹𝑓𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹𝑓 · 𝑊))))))
298294, 297mpbid 224 . 2 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹𝑓𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹𝑓 · 𝑊)))))
299127reeflogd 24807 . . 3 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹𝑓𝑐𝑊)))) = (𝑀 Σg (𝐹𝑓𝑐𝑊)))
300299eqcomd 2784 . 2 (𝜑 → (𝑀 Σg (𝐹𝑓𝑐𝑊)) = (exp‘(log‘(𝑀 Σg (𝐹𝑓𝑐𝑊)))))
301148reeflogd 24807 . . 3 (𝜑 → (exp‘(log‘(ℂfld Σg (𝐹𝑓 · 𝑊)))) = (ℂfld Σg (𝐹𝑓 · 𝑊)))
302301eqcomd 2784 . 2 (𝜑 → (ℂfld Σg (𝐹𝑓 · 𝑊)) = (exp‘(log‘(ℂfld Σg (𝐹𝑓 · 𝑊)))))
303298, 300, 3023brtr4d 4918 1 (𝜑 → (𝑀 Σg (𝐹𝑓𝑐𝑊)) ≤ (ℂfld Σg (𝐹𝑓 · 𝑊)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  Vcvv 3398   ∖ cdif 3789   ⊆ wss 3792  ∅c0 4141  {csn 4398   class class class wbr 4886   ↦ cmpt 4965   ↾ cres 5357   ∘ ccom 5359  ⟶wf 6131  –1-1-onto→wf1o 6134  ‘cfv 6135  (class class class)co 6922   ∘𝑓 cof 7172  Fincfn 8241  ℂcc 10270  ℝcr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  +∞cpnf 10408   < clt 10411   ≤ cle 10412   − cmin 10606  -cneg 10607   / cdiv 11032  ℝ+crp 12137  (,)cioo 12487  [,)cico 12489  [,]cicc 12490  Σcsu 14824  expce 15194  Basecbs 16255   ↾s cress 16256  0gc0g 16486   Σg cgsu 16487  Mndcmnd 17680   MndHom cmhm 17719  SubMndcsubmnd 17720  SubGrpcsubg 17972   GrpHom cghm 18041   GrpIso cgim 18083  CMndccmn 18579  mulGrpcmgp 18876  Ringcrg 18934  CRingccrg 18935  DivRingcdr 19139  SubRingcsubrg 19168  ℂfldccnfld 20142  ℝfldcrefld 20347  logclog 24738  ↑𝑐ccxp 24739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-mulg 17928  df-subg 17975  df-ghm 18042  df-gim 18085  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141  df-subrg 19170  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-refld 20348  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741 This theorem is referenced by:  amgmlemALT  43655  amgmw2d  43656
 Copyright terms: Public domain W3C validator