Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmwlem Structured version   Visualization version   GIF version

Theorem amgmwlem 48426
Description: Weighted version of amgmlem 26987. (Contributed by Kunhao Zheng, 19-Jun-2021.)
Hypotheses
Ref Expression
amgmwlem.0 𝑀 = (mulGrp‘ℂfld)
amgmwlem.1 (𝜑𝐴 ∈ Fin)
amgmwlem.2 (𝜑𝐴 ≠ ∅)
amgmwlem.3 (𝜑𝐹:𝐴⟶ℝ+)
amgmwlem.4 (𝜑𝑊:𝐴⟶ℝ+)
amgmwlem.5 (𝜑 → (ℂfld Σg 𝑊) = 1)
Assertion
Ref Expression
amgmwlem (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))

Proof of Theorem amgmwlem
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 𝑘 𝑦 𝑤 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmwlem.1 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
2 amgmwlem.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
32ffvelcdmda 7093 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
4 amgmwlem.4 . . . . . . . . . . . . 13 (𝜑𝑊:𝐴⟶ℝ+)
54ffvelcdmda 7093 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ+)
65rpred 13056 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ)
73, 6rpcxpcld 26729 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(𝑊𝑘)) ∈ ℝ+)
87relogcld 26619 . . . . . . . . 9 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
98recnd 11279 . . . . . . . 8 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
101, 9gsumfsum 21401 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
119negnegd 11599 . . . . . . . 8 ((𝜑𝑘𝐴) → --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
1211sumeq2dv 15693 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
138renegcld 11678 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
1413recnd 11279 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
151, 14fsumneg 15777 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
163, 6logcxpd 26730 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = ((𝑊𝑘) · (log‘(𝐹𝑘))))
1716negeqd 11491 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
1817sumeq2dv 15693 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
1918negeqd 11491 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
205rpcnd 13058 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℂ)
213relogcld 26619 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
2221recnd 11279 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
2320, 22mulneg2d 11705 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
2423eqcomd 2731 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -((𝑊𝑘) · (log‘(𝐹𝑘))) = ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2524sumeq2dv 15693 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2625negeqd 11491 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2715, 19, 263eqtrd 2769 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2810, 12, 273eqtr2rd 2772 . . . . . 6 (𝜑 → -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
29 negex 11495 . . . . . . . . . . 11 -(log‘(𝐹𝑘)) ∈ V
3029a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
314feqmptd 6966 . . . . . . . . . 10 (𝜑𝑊 = (𝑘𝐴 ↦ (𝑊𝑘)))
32 eqidd 2726 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
331, 5, 30, 31, 32offval2 7705 . . . . . . . . 9 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘)))))
3433oveq2d 7435 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))))
3522negcld 11595 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
3620, 35mulcld 11271 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) ∈ ℂ)
371, 36gsumfsum 21401 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3834, 37eqtrd 2765 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3938negeqd 11491 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
40 relogf1o 26562 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
41 f1of 6838 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
4240, 41ax-mp 5 . . . . . . . . 9 (log ↾ ℝ+):ℝ+⟶ℝ
43 rpre 13022 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4443anim2i 615 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
4544adantl 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
46 rpcxpcl 26672 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥𝑐𝑦) ∈ ℝ+)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥𝑐𝑦) ∈ ℝ+)
48 inidm 4217 . . . . . . . . . 10 (𝐴𝐴) = 𝐴
4947, 2, 4, 1, 1, 48off 7703 . . . . . . . . 9 (𝜑 → (𝐹f𝑐𝑊):𝐴⟶ℝ+)
50 fcompt 7142 . . . . . . . . 9 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5142, 49, 50sylancr 585 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5249ffvelcdmda 7093 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+)
53 fvres 6915 . . . . . . . . . . 11 (((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+ → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
5452, 53syl 17 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
552ffnd 6724 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝐴)
564ffnd 6724 . . . . . . . . . . . 12 (𝜑𝑊 Fn 𝐴)
57 eqidd 2726 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
58 eqidd 2726 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) = (𝑊𝑘))
5955, 56, 1, 1, 48, 57, 58ofval 7696 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) = ((𝐹𝑘)↑𝑐(𝑊𝑘)))
6059fveq2d 6900 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6154, 60eqtrd 2765 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6261mpteq2dva 5249 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6351, 62eqtrd 2765 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6463oveq2d 7435 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
6528, 39, 643eqtr4d 2775 . . . . 5 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
66 amgmwlem.0 . . . . . . . . . . . . 13 𝑀 = (mulGrp‘ℂfld)
6766oveq1i 7429 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
6867rpmsubg 21398 . . . . . . . . . . 11 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
69 subgsubm 19128 . . . . . . . . . . 11 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
7068, 69ax-mp 5 . . . . . . . . . 10 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
71 cnring 21352 . . . . . . . . . . 11 fld ∈ Ring
72 cnfldbas 21317 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
73 cnfld0 21354 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
74 cndrng 21360 . . . . . . . . . . . . 13 fld ∈ DivRing
7572, 73, 74drngui 20659 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
7675, 66unitsubm 20354 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
77 eqid 2725 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
7877subsubm 18792 . . . . . . . . . . 11 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
7971, 76, 78mp2b 10 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
8070, 79mpbi 229 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
8180simpli 482 . . . . . . . 8 + ∈ (SubMnd‘𝑀)
82 eqid 2725 . . . . . . . . 9 (𝑀s+) = (𝑀s+)
8382submbas 18790 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
8481, 83ax-mp 5 . . . . . . 7 + = (Base‘(𝑀s+))
85 cnfld1 21355 . . . . . . . . 9 1 = (1r‘ℂfld)
8666, 85ringidval 20152 . . . . . . . 8 1 = (0g𝑀)
87 eqid 2725 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
8882, 87subm0 18791 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
8981, 88ax-mp 5 . . . . . . . 8 (0g𝑀) = (0g‘(𝑀s+))
9086, 89eqtri 2753 . . . . . . 7 1 = (0g‘(𝑀s+))
91 cncrng 21350 . . . . . . . . 9 fld ∈ CRing
9266crngmgp 20210 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
9391, 92mp1i 13 . . . . . . . 8 (𝜑𝑀 ∈ CMnd)
9482submmnd 18789 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
9581, 94mp1i 13 . . . . . . . 8 (𝜑 → (𝑀s+) ∈ Mnd)
9682subcmn 19821 . . . . . . . 8 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
9793, 95, 96syl2anc 582 . . . . . . 7 (𝜑 → (𝑀s+) ∈ CMnd)
98 resubdrg 21574 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
9998simpli 482 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
100 df-refld 21571 . . . . . . . . . 10 fld = (ℂflds ℝ)
101100subrgring 20542 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
10299, 101ax-mp 5 . . . . . . . 8 fld ∈ Ring
103 ringmnd 20212 . . . . . . . 8 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
104102, 103mp1i 13 . . . . . . 7 (𝜑 → ℝfld ∈ Mnd)
10566oveq1i 7429 . . . . . . . . . 10 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
106105reloggim 26595 . . . . . . . . 9 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
107 gimghm 19244 . . . . . . . . 9 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
108106, 107ax-mp 5 . . . . . . . 8 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
109 ghmmhm 19206 . . . . . . . 8 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
110108, 109mp1i 13 . . . . . . 7 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
111 1red 11252 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
11249, 1, 111fdmfifsupp 9405 . . . . . . 7 (𝜑 → (𝐹f𝑐𝑊) finSupp 1)
11384, 90, 97, 104, 1, 110, 49, 112gsummhm 19922 . . . . . 6 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
114 subrgsubg 20545 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
11599, 114ax-mp 5 . . . . . . . . 9 ℝ ∈ (SubGrp‘ℂfld)
116 subgsubm 19128 . . . . . . . . 9 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
117115, 116ax-mp 5 . . . . . . . 8 ℝ ∈ (SubMnd‘ℂfld)
118117a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
11940, 41mp1i 13 . . . . . . . 8 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
120 fco 6747 . . . . . . . 8 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
121119, 49, 120syl2anc 582 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
1221, 118, 121, 100gsumsubm 18811 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
12381a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1241, 123, 49, 82gsumsubm 18811 . . . . . . 7 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = ((𝑀s+) Σg (𝐹f𝑐𝑊)))
125124fveq2d 6900 . . . . . 6 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
126113, 122, 1253eqtr4d 2775 . . . . 5 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))))
12786, 93, 1, 123, 49, 112gsumsubmcl 19903 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+)
128 fvres 6915 . . . . . 6 ((𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+ → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
129127, 128syl 17 . . . . 5 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
13065, 126, 1293eqtrd 2769 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
131 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
132131rpcnd 13058 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℂ)
133 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
134133rpcnd 13058 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℂ)
135132, 134mulcomd 11272 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
1361, 4, 2, 135caofcom 7721 . . . . . . . 8 (𝜑 → (𝑊f · 𝐹) = (𝐹f · 𝑊))
137136oveq2d 7435 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝐹f · 𝑊)))
1382feqmptd 6966 . . . . . . . . . . 11 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1391, 5, 3, 31, 138offval2 7705 . . . . . . . . . 10 (𝜑 → (𝑊f · 𝐹) = (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘))))
140139oveq2d 7435 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))))
1415, 3rpmulcld 13072 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
142141rpcnd 13058 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℂ)
1431, 142gsumfsum 21401 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
144140, 143eqtrd 2765 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
145 amgmwlem.2 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
1461, 145, 141fsumrpcl 15727 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
147144, 146eqeltrd 2825 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+)
148137, 147eqeltrrd 2826 . . . . . 6 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) ∈ ℝ+)
149148relogcld 26619 . . . . 5 (𝜑 → (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ)
150 ringcmn 20247 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
15171, 150mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
152 remulcl 11230 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
153152adantl 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
154 rpssre 13021 . . . . . . . 8 + ⊆ ℝ
155 fss 6739 . . . . . . . 8 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝑊:𝐴⟶ℝ)
1564, 154, 155sylancl 584 . . . . . . 7 (𝜑𝑊:𝐴⟶ℝ)
15721renegcld 11678 . . . . . . . 8 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
158157fmpttd 7124 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
159153, 156, 158, 1, 1, 48off 7703 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))):𝐴⟶ℝ)
160 0red 11254 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
161159, 1, 160fdmfifsupp 9405 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) finSupp 0)
16273, 151, 1, 118, 159, 161gsumsubmcl 19903 . . . . 5 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ∈ ℝ)
163154a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
164 simpr 483 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
165164relogcld 26619 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
166165renegcld 11678 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
167166fmpttd 7124 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
168 simpl 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
169 ioorp 13442 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
170168, 169eleqtrrdi 2836 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ (0(,)+∞))
171 simpr 483 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
172171, 169eleqtrrdi 2836 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ (0(,)+∞))
173 iccssioo2 13437 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
174170, 172, 173syl2anc 582 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
175174, 169sseqtrdi 4027 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
176175adantl 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
177 ioossico 13455 . . . . . . . . . 10 (0(,)+∞) ⊆ (0[,)+∞)
178169, 177eqsstrri 4012 . . . . . . . . 9 + ⊆ (0[,)+∞)
179 fss 6739 . . . . . . . . 9 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ (0[,)+∞)) → 𝑊:𝐴⟶(0[,)+∞))
1804, 178, 179sylancl 584 . . . . . . . 8 (𝜑𝑊:𝐴⟶(0[,)+∞))
181 0lt1 11773 . . . . . . . . 9 0 < 1
182 amgmwlem.5 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝑊) = 1)
183181, 182breqtrrid 5187 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg 𝑊))
184 logccv 26659 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1851843adant1 1127 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
186 elioore 13394 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
1871863ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
188 simp21 1203 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
189188relogcld 26619 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
190187, 189remulcld 11281 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
191 1red 11252 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 1 ∈ ℝ)
192191, 186resubcld 11679 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ)
1931923ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
194 simp22 1204 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
195194relogcld 26619 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
196193, 195remulcld 11281 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
197190, 196readdcld 11280 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
198 eliooord 13423 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
199198simpld 493 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < 𝑡)
200186, 199elrpd 13053 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ+)
2012003ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ+)
202201, 188rpmulcld 13072 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · 𝑥) ∈ ℝ+)
203 0red 11254 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 0 ∈ ℝ)
204198simprd 494 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (0(,)1) → 𝑡 < 1)
205 1m0e1 12371 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
206204, 205breqtrrdi 5191 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 𝑡 < (1 − 0))
207186, 191, 203, 206ltsub13d 11857 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < (1 − 𝑡))
208192, 207elrpd 13053 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ+)
2092083ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ+)
210209, 194rpmulcld 13072 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ+)
211 rpaddcl 13036 . . . . . . . . . . . . . 14 (((𝑡 · 𝑥) ∈ ℝ+ ∧ ((1 − 𝑡) · 𝑦) ∈ ℝ+) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
212202, 210, 211syl2anc 582 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
213212relogcld 26619 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
214197, 213ltnegd 11829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
215185, 214mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
216 eqidd 2726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
217 fveq2 6896 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
218217adantl 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
219218negeqd 11491 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
220 negex 11495 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
221220a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V)
222216, 219, 212, 221fvmptd 7011 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
223 fveq2 6896 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
224223negeqd 11491 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
225 eqid 2725 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
226 negex 11495 . . . . . . . . . . . . . . . 16 -(log‘𝑤) ∈ V
227224, 225, 226fvmpt3i 7009 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
228188, 227syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
229228oveq2d 7435 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
230187recnd 11279 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
231189recnd 11279 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
232230, 231mulneg2d 11705 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
233229, 232eqtrd 2765 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
234 fveq2 6896 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
235234negeqd 11491 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
236235, 225, 226fvmpt3i 7009 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
237194, 236syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
238237oveq2d 7435 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
239209rpcnd 13058 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
240195recnd 11279 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
241239, 240mulneg2d 11705 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
242238, 241eqtrd 2765 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
243233, 242oveq12d 7437 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
244190recnd 11279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
245196recnd 11279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
246244, 245negdid 11621 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
247243, 246eqtr4d 2768 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
248215, 222, 2473brtr4d 5181 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
249163, 167, 176, 248scvxcvx 26983 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
250163, 167, 176, 1, 180, 2, 183, 249jensen 26986 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊))))
251250simprd 494 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)))
252182oveq2d 7435 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · 𝐹)) / 1))
253252fveq2d 6900 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)))
254147rpcnd 13058 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℂ)
255254div1d 12020 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / 1) = (ℂfld Σg (𝑊f · 𝐹)))
256255fveq2d 6900 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))))
257 fveq2 6896 . . . . . . . . . . 11 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → (log‘𝑤) = (log‘(ℂfld Σg (𝑊f · 𝐹))))
258257negeqd 11491 . . . . . . . . . 10 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → -(log‘𝑤) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
259258, 225, 226fvmpt3i 7009 . . . . . . . . 9 ((ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
260147, 259syl 17 . . . . . . . 8 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
261137fveq2d 6900 . . . . . . . . 9 (𝜑 → (log‘(ℂfld Σg (𝑊f · 𝐹))) = (log‘(ℂfld Σg (𝐹f · 𝑊))))
262261negeqd 11491 . . . . . . . 8 (𝜑 → -(log‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
263260, 262eqtrd 2765 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
264253, 256, 2633eqtrd 2769 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
265182oveq2d 7435 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1))
266 ringmnd 20212 . . . . . . . . . . 11 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
26771, 266ax-mp 5 . . . . . . . . . 10 fld ∈ Mnd
26872submid 18786 . . . . . . . . . 10 (ℂfld ∈ Mnd → ℂ ∈ (SubMnd‘ℂfld))
269267, 268mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (SubMnd‘ℂfld))
270 mulcl 11229 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
271270adantl 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
272 rpcn 13024 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
273272ssriv 3980 . . . . . . . . . . . 12 + ⊆ ℂ
274273a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ+ ⊆ ℂ)
2754, 274fssd 6740 . . . . . . . . . 10 (𝜑𝑊:𝐴⟶ℂ)
276165recnd 11279 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℂ)
277276negcld 11595 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℂ)
278277fmpttd 7124 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ)
279 fco 6747 . . . . . . . . . . 11 (((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ ∧ 𝐹:𝐴⟶ℝ+) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
280278, 2, 279syl2anc 582 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
281271, 275, 280, 1, 1, 48off 7703 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)):𝐴⟶ℂ)
282281, 1, 160fdmfifsupp 9405 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) finSupp 0)
28373, 151, 1, 269, 281, 282gsumsubmcl 19903 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) ∈ ℂ)
284283div1d 12020 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1) = (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))))
285 eqidd 2726 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
286 fveq2 6896 . . . . . . . . . . 11 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
287286negeqd 11491 . . . . . . . . . 10 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
2883, 138, 285, 287fmptco 7138 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
289288oveq2d 7435 . . . . . . . 8 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))))
290289oveq2d 7435 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
291265, 284, 2903eqtrd 2769 . . . . . 6 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
292251, 264, 2913brtr3d 5180 . . . . 5 (𝜑 → -(log‘(ℂfld Σg (𝐹f · 𝑊))) ≤ (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
293149, 162, 292lenegcon1d 11833 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
294130, 293eqbrtrrd 5173 . . 3 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
295127relogcld 26619 . . . 4 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ)
296 efle 16106 . . . 4 (((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ ∧ (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ) → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
297295, 149, 296syl2anc 582 . . 3 (𝜑 → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
298294, 297mpbid 231 . 2 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
299127reeflogd 26620 . . 3 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) = (𝑀 Σg (𝐹f𝑐𝑊)))
300299eqcomd 2731 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))))
301148reeflogd 26620 . . 3 (𝜑 → (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))) = (ℂfld Σg (𝐹f · 𝑊)))
302301eqcomd 2731 . 2 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) = (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
303298, 300, 3023brtr4d 5181 1 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  cdif 3941  wss 3944  c0 4322  {csn 4630   class class class wbr 5149  cmpt 5232  cres 5680  ccom 5682  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  f cof 7683  Fincfn 8964  cc 11143  cr 11144  0cc0 11145  1c1 11146   + caddc 11148   · cmul 11150  +∞cpnf 11282   < clt 11285  cle 11286  cmin 11481  -cneg 11482   / cdiv 11908  +crp 13014  (,)cioo 13364  [,)cico 13366  [,]cicc 13367  Σcsu 15676  expce 16049  Basecbs 17199  s cress 17228  0gc0g 17440   Σg cgsu 17441  Mndcmnd 18713   MndHom cmhm 18757  SubMndcsubmnd 18758  SubGrpcsubg 19100   GrpHom cghm 19192   GrpIso cgim 19237  CMndccmn 19764  mulGrpcmgp 20103  Ringcrg 20202  CRingccrg 20203  SubRingcsubrg 20535  DivRingcdr 20653  fldccnfld 21313  fldcrefld 21570  logclog 26550  𝑐ccxp 26551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223  ax-addf 11224  ax-mulf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13798  df-mod 13876  df-seq 14008  df-exp 14068  df-fac 14277  df-bc 14306  df-hash 14334  df-shft 15058  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-limsup 15459  df-clim 15476  df-rlim 15477  df-sum 15677  df-ef 16055  df-sin 16057  df-cos 16058  df-pi 16060  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-starv 17267  df-sca 17268  df-vsca 17269  df-ip 17270  df-tset 17271  df-ple 17272  df-ds 17274  df-unif 17275  df-hom 17276  df-cco 17277  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-mulg 19048  df-subg 19103  df-ghm 19193  df-gim 19239  df-cntz 19297  df-cmn 19766  df-abl 19767  df-mgp 20104  df-rng 20122  df-ur 20151  df-ring 20204  df-cring 20205  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-subrng 20512  df-subrg 20537  df-drng 20655  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-refld 21571  df-top 22857  df-topon 22874  df-topsp 22896  df-bases 22910  df-cld 22984  df-ntr 22985  df-cls 22986  df-nei 23063  df-lp 23101  df-perf 23102  df-cn 23192  df-cnp 23193  df-haus 23280  df-cmp 23352  df-tx 23527  df-hmeo 23720  df-fil 23811  df-fm 23903  df-flim 23904  df-flf 23905  df-xms 24287  df-ms 24288  df-tms 24289  df-cncf 24859  df-limc 25856  df-dv 25857  df-log 26552  df-cxp 26553
This theorem is referenced by:  amgmlemALT  48427  amgmw2d  48428
  Copyright terms: Public domain W3C validator