Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmwlem Structured version   Visualization version   GIF version

Theorem amgmwlem 49787
Description: Weighted version of amgmlem 26898. (Contributed by Kunhao Zheng, 19-Jun-2021.)
Hypotheses
Ref Expression
amgmwlem.0 𝑀 = (mulGrp‘ℂfld)
amgmwlem.1 (𝜑𝐴 ∈ Fin)
amgmwlem.2 (𝜑𝐴 ≠ ∅)
amgmwlem.3 (𝜑𝐹:𝐴⟶ℝ+)
amgmwlem.4 (𝜑𝑊:𝐴⟶ℝ+)
amgmwlem.5 (𝜑 → (ℂfld Σg 𝑊) = 1)
Assertion
Ref Expression
amgmwlem (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))

Proof of Theorem amgmwlem
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 𝑘 𝑦 𝑤 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmwlem.1 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
2 amgmwlem.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
32ffvelcdmda 7018 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
4 amgmwlem.4 . . . . . . . . . . . . 13 (𝜑𝑊:𝐴⟶ℝ+)
54ffvelcdmda 7018 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ+)
65rpred 12937 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ)
73, 6rpcxpcld 26640 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(𝑊𝑘)) ∈ ℝ+)
87relogcld 26530 . . . . . . . . 9 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
98recnd 11143 . . . . . . . 8 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
101, 9gsumfsum 21341 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
119negnegd 11466 . . . . . . . 8 ((𝜑𝑘𝐴) → --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
1211sumeq2dv 15609 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
138renegcld 11547 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
1413recnd 11143 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
151, 14fsumneg 15694 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
163, 6logcxpd 26641 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = ((𝑊𝑘) · (log‘(𝐹𝑘))))
1716negeqd 11357 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
1817sumeq2dv 15609 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
1918negeqd 11357 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
205rpcnd 12939 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℂ)
213relogcld 26530 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
2221recnd 11143 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
2320, 22mulneg2d 11574 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
2423eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -((𝑊𝑘) · (log‘(𝐹𝑘))) = ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2524sumeq2dv 15609 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2625negeqd 11357 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2715, 19, 263eqtrd 2768 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2810, 12, 273eqtr2rd 2771 . . . . . 6 (𝜑 → -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
29 negex 11361 . . . . . . . . . . 11 -(log‘(𝐹𝑘)) ∈ V
3029a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
314feqmptd 6891 . . . . . . . . . 10 (𝜑𝑊 = (𝑘𝐴 ↦ (𝑊𝑘)))
32 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
331, 5, 30, 31, 32offval2 7633 . . . . . . . . 9 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘)))))
3433oveq2d 7365 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))))
3522negcld 11462 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
3620, 35mulcld 11135 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) ∈ ℂ)
371, 36gsumfsum 21341 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3834, 37eqtrd 2764 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3938negeqd 11357 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
40 relogf1o 26473 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
41 f1of 6764 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
4240, 41ax-mp 5 . . . . . . . . 9 (log ↾ ℝ+):ℝ+⟶ℝ
43 rpre 12902 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4443anim2i 617 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
4544adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
46 rpcxpcl 26583 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥𝑐𝑦) ∈ ℝ+)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥𝑐𝑦) ∈ ℝ+)
48 inidm 4178 . . . . . . . . . 10 (𝐴𝐴) = 𝐴
4947, 2, 4, 1, 1, 48off 7631 . . . . . . . . 9 (𝜑 → (𝐹f𝑐𝑊):𝐴⟶ℝ+)
50 fcompt 7067 . . . . . . . . 9 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5142, 49, 50sylancr 587 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5249ffvelcdmda 7018 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+)
53 fvres 6841 . . . . . . . . . . 11 (((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+ → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
5452, 53syl 17 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
552ffnd 6653 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝐴)
564ffnd 6653 . . . . . . . . . . . 12 (𝜑𝑊 Fn 𝐴)
57 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
58 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) = (𝑊𝑘))
5955, 56, 1, 1, 48, 57, 58ofval 7624 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) = ((𝐹𝑘)↑𝑐(𝑊𝑘)))
6059fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6154, 60eqtrd 2764 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6261mpteq2dva 5185 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6351, 62eqtrd 2764 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6463oveq2d 7365 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
6528, 39, 643eqtr4d 2774 . . . . 5 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
66 amgmwlem.0 . . . . . . . . . . . . 13 𝑀 = (mulGrp‘ℂfld)
6766oveq1i 7359 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
6867rpmsubg 21338 . . . . . . . . . . 11 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
69 subgsubm 19027 . . . . . . . . . . 11 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
7068, 69ax-mp 5 . . . . . . . . . 10 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
71 cnring 21297 . . . . . . . . . . 11 fld ∈ Ring
72 cnfldbas 21265 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
73 cnfld0 21299 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
74 cndrng 21305 . . . . . . . . . . . . 13 fld ∈ DivRing
7572, 73, 74drngui 20620 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
7675, 66unitsubm 20271 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
77 eqid 2729 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
7877subsubm 18690 . . . . . . . . . . 11 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
7971, 76, 78mp2b 10 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
8070, 79mpbi 230 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
8180simpli 483 . . . . . . . 8 + ∈ (SubMnd‘𝑀)
82 eqid 2729 . . . . . . . . 9 (𝑀s+) = (𝑀s+)
8382submbas 18688 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
8481, 83ax-mp 5 . . . . . . 7 + = (Base‘(𝑀s+))
85 cnfld1 21300 . . . . . . . . 9 1 = (1r‘ℂfld)
8666, 85ringidval 20068 . . . . . . . 8 1 = (0g𝑀)
87 eqid 2729 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
8882, 87subm0 18689 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
8981, 88ax-mp 5 . . . . . . . 8 (0g𝑀) = (0g‘(𝑀s+))
9086, 89eqtri 2752 . . . . . . 7 1 = (0g‘(𝑀s+))
91 cncrng 21295 . . . . . . . . 9 fld ∈ CRing
9266crngmgp 20126 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
9391, 92mp1i 13 . . . . . . . 8 (𝜑𝑀 ∈ CMnd)
9482submmnd 18687 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
9581, 94mp1i 13 . . . . . . . 8 (𝜑 → (𝑀s+) ∈ Mnd)
9682subcmn 19716 . . . . . . . 8 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
9793, 95, 96syl2anc 584 . . . . . . 7 (𝜑 → (𝑀s+) ∈ CMnd)
98 resubdrg 21515 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
9998simpli 483 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
100 df-refld 21512 . . . . . . . . . 10 fld = (ℂflds ℝ)
101100subrgring 20459 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
10299, 101ax-mp 5 . . . . . . . 8 fld ∈ Ring
103 ringmnd 20128 . . . . . . . 8 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
104102, 103mp1i 13 . . . . . . 7 (𝜑 → ℝfld ∈ Mnd)
10566oveq1i 7359 . . . . . . . . . 10 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
106105reloggim 26506 . . . . . . . . 9 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
107 gimghm 19143 . . . . . . . . 9 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
108106, 107ax-mp 5 . . . . . . . 8 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
109 ghmmhm 19105 . . . . . . . 8 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
110108, 109mp1i 13 . . . . . . 7 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
111 1red 11116 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
11249, 1, 111fdmfifsupp 9265 . . . . . . 7 (𝜑 → (𝐹f𝑐𝑊) finSupp 1)
11384, 90, 97, 104, 1, 110, 49, 112gsummhm 19817 . . . . . 6 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
114 subrgsubg 20462 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
11599, 114ax-mp 5 . . . . . . . . 9 ℝ ∈ (SubGrp‘ℂfld)
116 subgsubm 19027 . . . . . . . . 9 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
117115, 116ax-mp 5 . . . . . . . 8 ℝ ∈ (SubMnd‘ℂfld)
118117a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
11940, 41mp1i 13 . . . . . . . 8 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
120 fco 6676 . . . . . . . 8 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
121119, 49, 120syl2anc 584 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
1221, 118, 121, 100gsumsubm 18709 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
12381a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1241, 123, 49, 82gsumsubm 18709 . . . . . . 7 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = ((𝑀s+) Σg (𝐹f𝑐𝑊)))
125124fveq2d 6826 . . . . . 6 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
126113, 122, 1253eqtr4d 2774 . . . . 5 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))))
12786, 93, 1, 123, 49, 112gsumsubmcl 19798 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+)
128 fvres 6841 . . . . . 6 ((𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+ → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
129127, 128syl 17 . . . . 5 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
13065, 126, 1293eqtrd 2768 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
131 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
132131rpcnd 12939 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℂ)
133 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
134133rpcnd 12939 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℂ)
135132, 134mulcomd 11136 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
1361, 4, 2, 135caofcom 7650 . . . . . . . 8 (𝜑 → (𝑊f · 𝐹) = (𝐹f · 𝑊))
137136oveq2d 7365 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝐹f · 𝑊)))
1382feqmptd 6891 . . . . . . . . . . 11 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1391, 5, 3, 31, 138offval2 7633 . . . . . . . . . 10 (𝜑 → (𝑊f · 𝐹) = (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘))))
140139oveq2d 7365 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))))
1415, 3rpmulcld 12953 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
142141rpcnd 12939 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℂ)
1431, 142gsumfsum 21341 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
144140, 143eqtrd 2764 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
145 amgmwlem.2 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
1461, 145, 141fsumrpcl 15644 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
147144, 146eqeltrd 2828 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+)
148137, 147eqeltrrd 2829 . . . . . 6 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) ∈ ℝ+)
149148relogcld 26530 . . . . 5 (𝜑 → (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ)
150 ringcmn 20167 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
15171, 150mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
152 remulcl 11094 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
153152adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
154 rpssre 12901 . . . . . . . 8 + ⊆ ℝ
155 fss 6668 . . . . . . . 8 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝑊:𝐴⟶ℝ)
1564, 154, 155sylancl 586 . . . . . . 7 (𝜑𝑊:𝐴⟶ℝ)
15721renegcld 11547 . . . . . . . 8 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
158157fmpttd 7049 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
159153, 156, 158, 1, 1, 48off 7631 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))):𝐴⟶ℝ)
160 0red 11118 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
161159, 1, 160fdmfifsupp 9265 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) finSupp 0)
16273, 151, 1, 118, 159, 161gsumsubmcl 19798 . . . . 5 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ∈ ℝ)
163154a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
164 simpr 484 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
165164relogcld 26530 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
166165renegcld 11547 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
167166fmpttd 7049 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
168 simpl 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
169 ioorp 13328 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
170168, 169eleqtrrdi 2839 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ (0(,)+∞))
171 simpr 484 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
172171, 169eleqtrrdi 2839 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ (0(,)+∞))
173 iccssioo2 13322 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
174170, 172, 173syl2anc 584 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
175174, 169sseqtrdi 3976 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
176175adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
177 ioossico 13341 . . . . . . . . . 10 (0(,)+∞) ⊆ (0[,)+∞)
178169, 177eqsstrri 3983 . . . . . . . . 9 + ⊆ (0[,)+∞)
179 fss 6668 . . . . . . . . 9 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ (0[,)+∞)) → 𝑊:𝐴⟶(0[,)+∞))
1804, 178, 179sylancl 586 . . . . . . . 8 (𝜑𝑊:𝐴⟶(0[,)+∞))
181 0lt1 11642 . . . . . . . . 9 0 < 1
182 amgmwlem.5 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝑊) = 1)
183181, 182breqtrrid 5130 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg 𝑊))
184 logccv 26570 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1851843adant1 1130 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
186 elioore 13278 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
1871863ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
188 simp21 1207 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
189188relogcld 26530 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
190187, 189remulcld 11145 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
191 1red 11116 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 1 ∈ ℝ)
192191, 186resubcld 11548 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ)
1931923ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
194 simp22 1208 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
195194relogcld 26530 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
196193, 195remulcld 11145 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
197190, 196readdcld 11144 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
198 eliooord 13308 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
199198simpld 494 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < 𝑡)
200186, 199elrpd 12934 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ+)
2012003ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ+)
202201, 188rpmulcld 12953 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · 𝑥) ∈ ℝ+)
203 0red 11118 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 0 ∈ ℝ)
204198simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (0(,)1) → 𝑡 < 1)
205 1m0e1 12244 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
206204, 205breqtrrdi 5134 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 𝑡 < (1 − 0))
207186, 191, 203, 206ltsub13d 11726 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < (1 − 𝑡))
208192, 207elrpd 12934 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ+)
2092083ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ+)
210209, 194rpmulcld 12953 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ+)
211 rpaddcl 12917 . . . . . . . . . . . . . 14 (((𝑡 · 𝑥) ∈ ℝ+ ∧ ((1 − 𝑡) · 𝑦) ∈ ℝ+) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
212202, 210, 211syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
213212relogcld 26530 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
214197, 213ltnegd 11698 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
215185, 214mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
216 eqidd 2730 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
217 fveq2 6822 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
218217adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
219218negeqd 11357 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
220 negex 11361 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
221220a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V)
222216, 219, 212, 221fvmptd 6937 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
223 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
224223negeqd 11357 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
225 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
226 negex 11361 . . . . . . . . . . . . . . . 16 -(log‘𝑤) ∈ V
227224, 225, 226fvmpt3i 6935 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
228188, 227syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
229228oveq2d 7365 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
230187recnd 11143 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
231189recnd 11143 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
232230, 231mulneg2d 11574 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
233229, 232eqtrd 2764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
234 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
235234negeqd 11357 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
236235, 225, 226fvmpt3i 6935 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
237194, 236syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
238237oveq2d 7365 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
239209rpcnd 12939 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
240195recnd 11143 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
241239, 240mulneg2d 11574 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
242238, 241eqtrd 2764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
243233, 242oveq12d 7367 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
244190recnd 11143 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
245196recnd 11143 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
246244, 245negdid 11488 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
247243, 246eqtr4d 2767 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
248215, 222, 2473brtr4d 5124 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
249163, 167, 176, 248scvxcvx 26894 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
250163, 167, 176, 1, 180, 2, 183, 249jensen 26897 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊))))
251250simprd 495 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)))
252182oveq2d 7365 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · 𝐹)) / 1))
253252fveq2d 6826 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)))
254147rpcnd 12939 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℂ)
255254div1d 11892 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / 1) = (ℂfld Σg (𝑊f · 𝐹)))
256255fveq2d 6826 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))))
257 fveq2 6822 . . . . . . . . . . 11 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → (log‘𝑤) = (log‘(ℂfld Σg (𝑊f · 𝐹))))
258257negeqd 11357 . . . . . . . . . 10 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → -(log‘𝑤) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
259258, 225, 226fvmpt3i 6935 . . . . . . . . 9 ((ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
260147, 259syl 17 . . . . . . . 8 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
261137fveq2d 6826 . . . . . . . . 9 (𝜑 → (log‘(ℂfld Σg (𝑊f · 𝐹))) = (log‘(ℂfld Σg (𝐹f · 𝑊))))
262261negeqd 11357 . . . . . . . 8 (𝜑 → -(log‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
263260, 262eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
264253, 256, 2633eqtrd 2768 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
265182oveq2d 7365 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1))
266 ringmnd 20128 . . . . . . . . . . 11 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
26771, 266ax-mp 5 . . . . . . . . . 10 fld ∈ Mnd
26872submid 18684 . . . . . . . . . 10 (ℂfld ∈ Mnd → ℂ ∈ (SubMnd‘ℂfld))
269267, 268mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (SubMnd‘ℂfld))
270 mulcl 11093 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
271270adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
272 rpcn 12904 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
273272ssriv 3939 . . . . . . . . . . . 12 + ⊆ ℂ
274273a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ+ ⊆ ℂ)
2754, 274fssd 6669 . . . . . . . . . 10 (𝜑𝑊:𝐴⟶ℂ)
276165recnd 11143 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℂ)
277276negcld 11462 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℂ)
278277fmpttd 7049 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ)
279 fco 6676 . . . . . . . . . . 11 (((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ ∧ 𝐹:𝐴⟶ℝ+) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
280278, 2, 279syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
281271, 275, 280, 1, 1, 48off 7631 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)):𝐴⟶ℂ)
282281, 1, 160fdmfifsupp 9265 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) finSupp 0)
28373, 151, 1, 269, 281, 282gsumsubmcl 19798 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) ∈ ℂ)
284283div1d 11892 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1) = (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))))
285 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
286 fveq2 6822 . . . . . . . . . . 11 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
287286negeqd 11357 . . . . . . . . . 10 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
2883, 138, 285, 287fmptco 7063 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
289288oveq2d 7365 . . . . . . . 8 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))))
290289oveq2d 7365 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
291265, 284, 2903eqtrd 2768 . . . . . 6 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
292251, 264, 2913brtr3d 5123 . . . . 5 (𝜑 → -(log‘(ℂfld Σg (𝐹f · 𝑊))) ≤ (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
293149, 162, 292lenegcon1d 11702 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
294130, 293eqbrtrrd 5116 . . 3 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
295127relogcld 26530 . . . 4 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ)
296 efle 16027 . . . 4 (((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ ∧ (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ) → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
297295, 149, 296syl2anc 584 . . 3 (𝜑 → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
298294, 297mpbid 232 . 2 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
299127reeflogd 26531 . . 3 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) = (𝑀 Σg (𝐹f𝑐𝑊)))
300299eqcomd 2735 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))))
301148reeflogd 26531 . . 3 (𝜑 → (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))) = (ℂfld Σg (𝐹f · 𝑊)))
302301eqcomd 2735 . 2 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) = (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
303298, 300, 3023brtr4d 5124 1 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cdif 3900  wss 3903  c0 4284  {csn 4577   class class class wbr 5092  cmpt 5173  cres 5621  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  f cof 7611  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  +crp 12893  (,)cioo 13248  [,)cico 13250  [,]cicc 13251  Σcsu 15593  expce 15968  Basecbs 17120  s cress 17141  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608   MndHom cmhm 18655  SubMndcsubmnd 18656  SubGrpcsubg 18999   GrpHom cghm 19091   GrpIso cgim 19136  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  SubRingcsubrg 20454  DivRingcdr 20614  fldccnfld 21261  fldcrefld 21511  logclog 26461  𝑐ccxp 26462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-ghm 19092  df-gim 19138  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-refld 21512  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464
This theorem is referenced by:  amgmlemALT  49788  amgmw2d  49789
  Copyright terms: Public domain W3C validator