Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmwlem Structured version   Visualization version   GIF version

Theorem amgmwlem 49646
Description: Weighted version of amgmlem 26957. (Contributed by Kunhao Zheng, 19-Jun-2021.)
Hypotheses
Ref Expression
amgmwlem.0 𝑀 = (mulGrp‘ℂfld)
amgmwlem.1 (𝜑𝐴 ∈ Fin)
amgmwlem.2 (𝜑𝐴 ≠ ∅)
amgmwlem.3 (𝜑𝐹:𝐴⟶ℝ+)
amgmwlem.4 (𝜑𝑊:𝐴⟶ℝ+)
amgmwlem.5 (𝜑 → (ℂfld Σg 𝑊) = 1)
Assertion
Ref Expression
amgmwlem (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))

Proof of Theorem amgmwlem
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 𝑘 𝑦 𝑤 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmwlem.1 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
2 amgmwlem.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
32ffvelcdmda 7079 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
4 amgmwlem.4 . . . . . . . . . . . . 13 (𝜑𝑊:𝐴⟶ℝ+)
54ffvelcdmda 7079 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ+)
65rpred 13056 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ)
73, 6rpcxpcld 26699 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(𝑊𝑘)) ∈ ℝ+)
87relogcld 26589 . . . . . . . . 9 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
98recnd 11268 . . . . . . . 8 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
101, 9gsumfsum 21407 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
119negnegd 11590 . . . . . . . 8 ((𝜑𝑘𝐴) → --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
1211sumeq2dv 15723 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
138renegcld 11669 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
1413recnd 11268 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
151, 14fsumneg 15808 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
163, 6logcxpd 26700 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = ((𝑊𝑘) · (log‘(𝐹𝑘))))
1716negeqd 11481 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
1817sumeq2dv 15723 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
1918negeqd 11481 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
205rpcnd 13058 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℂ)
213relogcld 26589 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
2221recnd 11268 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
2320, 22mulneg2d 11696 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
2423eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -((𝑊𝑘) · (log‘(𝐹𝑘))) = ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2524sumeq2dv 15723 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2625negeqd 11481 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2715, 19, 263eqtrd 2775 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2810, 12, 273eqtr2rd 2778 . . . . . 6 (𝜑 → -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
29 negex 11485 . . . . . . . . . . 11 -(log‘(𝐹𝑘)) ∈ V
3029a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
314feqmptd 6952 . . . . . . . . . 10 (𝜑𝑊 = (𝑘𝐴 ↦ (𝑊𝑘)))
32 eqidd 2737 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
331, 5, 30, 31, 32offval2 7696 . . . . . . . . 9 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘)))))
3433oveq2d 7426 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))))
3522negcld 11586 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
3620, 35mulcld 11260 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) ∈ ℂ)
371, 36gsumfsum 21407 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3834, 37eqtrd 2771 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3938negeqd 11481 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
40 relogf1o 26532 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
41 f1of 6823 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
4240, 41ax-mp 5 . . . . . . . . 9 (log ↾ ℝ+):ℝ+⟶ℝ
43 rpre 13022 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4443anim2i 617 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
4544adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
46 rpcxpcl 26642 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥𝑐𝑦) ∈ ℝ+)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥𝑐𝑦) ∈ ℝ+)
48 inidm 4207 . . . . . . . . . 10 (𝐴𝐴) = 𝐴
4947, 2, 4, 1, 1, 48off 7694 . . . . . . . . 9 (𝜑 → (𝐹f𝑐𝑊):𝐴⟶ℝ+)
50 fcompt 7128 . . . . . . . . 9 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5142, 49, 50sylancr 587 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5249ffvelcdmda 7079 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+)
53 fvres 6900 . . . . . . . . . . 11 (((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+ → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
5452, 53syl 17 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
552ffnd 6712 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝐴)
564ffnd 6712 . . . . . . . . . . . 12 (𝜑𝑊 Fn 𝐴)
57 eqidd 2737 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
58 eqidd 2737 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) = (𝑊𝑘))
5955, 56, 1, 1, 48, 57, 58ofval 7687 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) = ((𝐹𝑘)↑𝑐(𝑊𝑘)))
6059fveq2d 6885 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6154, 60eqtrd 2771 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6261mpteq2dva 5219 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6351, 62eqtrd 2771 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6463oveq2d 7426 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
6528, 39, 643eqtr4d 2781 . . . . 5 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
66 amgmwlem.0 . . . . . . . . . . . . 13 𝑀 = (mulGrp‘ℂfld)
6766oveq1i 7420 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
6867rpmsubg 21404 . . . . . . . . . . 11 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
69 subgsubm 19136 . . . . . . . . . . 11 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
7068, 69ax-mp 5 . . . . . . . . . 10 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
71 cnring 21358 . . . . . . . . . . 11 fld ∈ Ring
72 cnfldbas 21324 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
73 cnfld0 21360 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
74 cndrng 21366 . . . . . . . . . . . . 13 fld ∈ DivRing
7572, 73, 74drngui 20700 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
7675, 66unitsubm 20351 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
77 eqid 2736 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
7877subsubm 18799 . . . . . . . . . . 11 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
7971, 76, 78mp2b 10 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
8070, 79mpbi 230 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
8180simpli 483 . . . . . . . 8 + ∈ (SubMnd‘𝑀)
82 eqid 2736 . . . . . . . . 9 (𝑀s+) = (𝑀s+)
8382submbas 18797 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
8481, 83ax-mp 5 . . . . . . 7 + = (Base‘(𝑀s+))
85 cnfld1 21361 . . . . . . . . 9 1 = (1r‘ℂfld)
8666, 85ringidval 20148 . . . . . . . 8 1 = (0g𝑀)
87 eqid 2736 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
8882, 87subm0 18798 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
8981, 88ax-mp 5 . . . . . . . 8 (0g𝑀) = (0g‘(𝑀s+))
9086, 89eqtri 2759 . . . . . . 7 1 = (0g‘(𝑀s+))
91 cncrng 21356 . . . . . . . . 9 fld ∈ CRing
9266crngmgp 20206 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
9391, 92mp1i 13 . . . . . . . 8 (𝜑𝑀 ∈ CMnd)
9482submmnd 18796 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
9581, 94mp1i 13 . . . . . . . 8 (𝜑 → (𝑀s+) ∈ Mnd)
9682subcmn 19823 . . . . . . . 8 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
9793, 95, 96syl2anc 584 . . . . . . 7 (𝜑 → (𝑀s+) ∈ CMnd)
98 resubdrg 21573 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
9998simpli 483 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
100 df-refld 21570 . . . . . . . . . 10 fld = (ℂflds ℝ)
101100subrgring 20539 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
10299, 101ax-mp 5 . . . . . . . 8 fld ∈ Ring
103 ringmnd 20208 . . . . . . . 8 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
104102, 103mp1i 13 . . . . . . 7 (𝜑 → ℝfld ∈ Mnd)
10566oveq1i 7420 . . . . . . . . . 10 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
106105reloggim 26565 . . . . . . . . 9 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
107 gimghm 19252 . . . . . . . . 9 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
108106, 107ax-mp 5 . . . . . . . 8 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
109 ghmmhm 19214 . . . . . . . 8 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
110108, 109mp1i 13 . . . . . . 7 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
111 1red 11241 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
11249, 1, 111fdmfifsupp 9392 . . . . . . 7 (𝜑 → (𝐹f𝑐𝑊) finSupp 1)
11384, 90, 97, 104, 1, 110, 49, 112gsummhm 19924 . . . . . 6 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
114 subrgsubg 20542 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
11599, 114ax-mp 5 . . . . . . . . 9 ℝ ∈ (SubGrp‘ℂfld)
116 subgsubm 19136 . . . . . . . . 9 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
117115, 116ax-mp 5 . . . . . . . 8 ℝ ∈ (SubMnd‘ℂfld)
118117a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
11940, 41mp1i 13 . . . . . . . 8 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
120 fco 6735 . . . . . . . 8 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
121119, 49, 120syl2anc 584 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
1221, 118, 121, 100gsumsubm 18818 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
12381a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1241, 123, 49, 82gsumsubm 18818 . . . . . . 7 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = ((𝑀s+) Σg (𝐹f𝑐𝑊)))
125124fveq2d 6885 . . . . . 6 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
126113, 122, 1253eqtr4d 2781 . . . . 5 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))))
12786, 93, 1, 123, 49, 112gsumsubmcl 19905 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+)
128 fvres 6900 . . . . . 6 ((𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+ → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
129127, 128syl 17 . . . . 5 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
13065, 126, 1293eqtrd 2775 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
131 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
132131rpcnd 13058 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℂ)
133 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
134133rpcnd 13058 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℂ)
135132, 134mulcomd 11261 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
1361, 4, 2, 135caofcom 7713 . . . . . . . 8 (𝜑 → (𝑊f · 𝐹) = (𝐹f · 𝑊))
137136oveq2d 7426 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝐹f · 𝑊)))
1382feqmptd 6952 . . . . . . . . . . 11 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1391, 5, 3, 31, 138offval2 7696 . . . . . . . . . 10 (𝜑 → (𝑊f · 𝐹) = (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘))))
140139oveq2d 7426 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))))
1415, 3rpmulcld 13072 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
142141rpcnd 13058 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℂ)
1431, 142gsumfsum 21407 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
144140, 143eqtrd 2771 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
145 amgmwlem.2 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
1461, 145, 141fsumrpcl 15758 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
147144, 146eqeltrd 2835 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+)
148137, 147eqeltrrd 2836 . . . . . 6 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) ∈ ℝ+)
149148relogcld 26589 . . . . 5 (𝜑 → (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ)
150 ringcmn 20247 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
15171, 150mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
152 remulcl 11219 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
153152adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
154 rpssre 13021 . . . . . . . 8 + ⊆ ℝ
155 fss 6727 . . . . . . . 8 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝑊:𝐴⟶ℝ)
1564, 154, 155sylancl 586 . . . . . . 7 (𝜑𝑊:𝐴⟶ℝ)
15721renegcld 11669 . . . . . . . 8 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
158157fmpttd 7110 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
159153, 156, 158, 1, 1, 48off 7694 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))):𝐴⟶ℝ)
160 0red 11243 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
161159, 1, 160fdmfifsupp 9392 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) finSupp 0)
16273, 151, 1, 118, 159, 161gsumsubmcl 19905 . . . . 5 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ∈ ℝ)
163154a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
164 simpr 484 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
165164relogcld 26589 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
166165renegcld 11669 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
167166fmpttd 7110 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
168 simpl 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
169 ioorp 13447 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
170168, 169eleqtrrdi 2846 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ (0(,)+∞))
171 simpr 484 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
172171, 169eleqtrrdi 2846 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ (0(,)+∞))
173 iccssioo2 13441 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
174170, 172, 173syl2anc 584 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
175174, 169sseqtrdi 4004 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
176175adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
177 ioossico 13460 . . . . . . . . . 10 (0(,)+∞) ⊆ (0[,)+∞)
178169, 177eqsstrri 4011 . . . . . . . . 9 + ⊆ (0[,)+∞)
179 fss 6727 . . . . . . . . 9 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ (0[,)+∞)) → 𝑊:𝐴⟶(0[,)+∞))
1804, 178, 179sylancl 586 . . . . . . . 8 (𝜑𝑊:𝐴⟶(0[,)+∞))
181 0lt1 11764 . . . . . . . . 9 0 < 1
182 amgmwlem.5 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝑊) = 1)
183181, 182breqtrrid 5162 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg 𝑊))
184 logccv 26629 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1851843adant1 1130 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
186 elioore 13397 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
1871863ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
188 simp21 1207 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
189188relogcld 26589 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
190187, 189remulcld 11270 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
191 1red 11241 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 1 ∈ ℝ)
192191, 186resubcld 11670 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ)
1931923ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
194 simp22 1208 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
195194relogcld 26589 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
196193, 195remulcld 11270 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
197190, 196readdcld 11269 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
198 eliooord 13427 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
199198simpld 494 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < 𝑡)
200186, 199elrpd 13053 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ+)
2012003ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ+)
202201, 188rpmulcld 13072 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · 𝑥) ∈ ℝ+)
203 0red 11243 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 0 ∈ ℝ)
204198simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (0(,)1) → 𝑡 < 1)
205 1m0e1 12366 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
206204, 205breqtrrdi 5166 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 𝑡 < (1 − 0))
207186, 191, 203, 206ltsub13d 11848 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < (1 − 𝑡))
208192, 207elrpd 13053 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ+)
2092083ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ+)
210209, 194rpmulcld 13072 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ+)
211 rpaddcl 13036 . . . . . . . . . . . . . 14 (((𝑡 · 𝑥) ∈ ℝ+ ∧ ((1 − 𝑡) · 𝑦) ∈ ℝ+) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
212202, 210, 211syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
213212relogcld 26589 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
214197, 213ltnegd 11820 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
215185, 214mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
216 eqidd 2737 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
217 fveq2 6881 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
218217adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
219218negeqd 11481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
220 negex 11485 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
221220a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V)
222216, 219, 212, 221fvmptd 6998 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
223 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
224223negeqd 11481 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
225 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
226 negex 11485 . . . . . . . . . . . . . . . 16 -(log‘𝑤) ∈ V
227224, 225, 226fvmpt3i 6996 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
228188, 227syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
229228oveq2d 7426 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
230187recnd 11268 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
231189recnd 11268 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
232230, 231mulneg2d 11696 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
233229, 232eqtrd 2771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
234 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
235234negeqd 11481 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
236235, 225, 226fvmpt3i 6996 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
237194, 236syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
238237oveq2d 7426 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
239209rpcnd 13058 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
240195recnd 11268 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
241239, 240mulneg2d 11696 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
242238, 241eqtrd 2771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
243233, 242oveq12d 7428 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
244190recnd 11268 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
245196recnd 11268 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
246244, 245negdid 11612 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
247243, 246eqtr4d 2774 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
248215, 222, 2473brtr4d 5156 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
249163, 167, 176, 248scvxcvx 26953 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
250163, 167, 176, 1, 180, 2, 183, 249jensen 26956 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊))))
251250simprd 495 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)))
252182oveq2d 7426 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · 𝐹)) / 1))
253252fveq2d 6885 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)))
254147rpcnd 13058 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℂ)
255254div1d 12014 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / 1) = (ℂfld Σg (𝑊f · 𝐹)))
256255fveq2d 6885 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))))
257 fveq2 6881 . . . . . . . . . . 11 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → (log‘𝑤) = (log‘(ℂfld Σg (𝑊f · 𝐹))))
258257negeqd 11481 . . . . . . . . . 10 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → -(log‘𝑤) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
259258, 225, 226fvmpt3i 6996 . . . . . . . . 9 ((ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
260147, 259syl 17 . . . . . . . 8 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
261137fveq2d 6885 . . . . . . . . 9 (𝜑 → (log‘(ℂfld Σg (𝑊f · 𝐹))) = (log‘(ℂfld Σg (𝐹f · 𝑊))))
262261negeqd 11481 . . . . . . . 8 (𝜑 → -(log‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
263260, 262eqtrd 2771 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
264253, 256, 2633eqtrd 2775 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
265182oveq2d 7426 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1))
266 ringmnd 20208 . . . . . . . . . . 11 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
26771, 266ax-mp 5 . . . . . . . . . 10 fld ∈ Mnd
26872submid 18793 . . . . . . . . . 10 (ℂfld ∈ Mnd → ℂ ∈ (SubMnd‘ℂfld))
269267, 268mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (SubMnd‘ℂfld))
270 mulcl 11218 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
271270adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
272 rpcn 13024 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
273272ssriv 3967 . . . . . . . . . . . 12 + ⊆ ℂ
274273a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ+ ⊆ ℂ)
2754, 274fssd 6728 . . . . . . . . . 10 (𝜑𝑊:𝐴⟶ℂ)
276165recnd 11268 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℂ)
277276negcld 11586 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℂ)
278277fmpttd 7110 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ)
279 fco 6735 . . . . . . . . . . 11 (((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ ∧ 𝐹:𝐴⟶ℝ+) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
280278, 2, 279syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
281271, 275, 280, 1, 1, 48off 7694 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)):𝐴⟶ℂ)
282281, 1, 160fdmfifsupp 9392 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) finSupp 0)
28373, 151, 1, 269, 281, 282gsumsubmcl 19905 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) ∈ ℂ)
284283div1d 12014 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1) = (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))))
285 eqidd 2737 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
286 fveq2 6881 . . . . . . . . . . 11 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
287286negeqd 11481 . . . . . . . . . 10 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
2883, 138, 285, 287fmptco 7124 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
289288oveq2d 7426 . . . . . . . 8 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))))
290289oveq2d 7426 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
291265, 284, 2903eqtrd 2775 . . . . . 6 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
292251, 264, 2913brtr3d 5155 . . . . 5 (𝜑 → -(log‘(ℂfld Σg (𝐹f · 𝑊))) ≤ (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
293149, 162, 292lenegcon1d 11824 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
294130, 293eqbrtrrd 5148 . . 3 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
295127relogcld 26589 . . . 4 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ)
296 efle 16141 . . . 4 (((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ ∧ (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ) → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
297295, 149, 296syl2anc 584 . . 3 (𝜑 → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
298294, 297mpbid 232 . 2 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
299127reeflogd 26590 . . 3 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) = (𝑀 Σg (𝐹f𝑐𝑊)))
300299eqcomd 2742 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))))
301148reeflogd 26590 . . 3 (𝜑 → (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))) = (ℂfld Σg (𝐹f · 𝑊)))
302301eqcomd 2742 . 2 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) = (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
303298, 300, 3023brtr4d 5156 1 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cmpt 5206  cres 5661  ccom 5663  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  f cof 7674  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  +crp 13013  (,)cioo 13367  [,)cico 13369  [,]cicc 13370  Σcsu 15707  expce 16082  Basecbs 17233  s cress 17256  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717   MndHom cmhm 18764  SubMndcsubmnd 18765  SubGrpcsubg 19108   GrpHom cghm 19200   GrpIso cgim 19245  CMndccmn 19766  mulGrpcmgp 20105  Ringcrg 20198  CRingccrg 20199  SubRingcsubrg 20534  DivRingcdr 20694  fldccnfld 21320  fldcrefld 21569  logclog 26520  𝑐ccxp 26521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-subrng 20511  df-subrg 20535  df-drng 20696  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-refld 21570  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523
This theorem is referenced by:  amgmlemALT  49647  amgmw2d  49648
  Copyright terms: Public domain W3C validator