Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rzgrp | Structured version Visualization version GIF version |
Description: The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
rzgrp.r | ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) |
Ref | Expression |
---|---|
rzgrp | ⊢ 𝑅 ∈ Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubrg 20429 | . . . . 5 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
2 | zssre 12196 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
3 | resubdrg 20583 | . . . . . . 7 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
4 | 3 | simpli 487 | . . . . . 6 ⊢ ℝ ∈ (SubRing‘ℂfld) |
5 | df-refld 20580 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
6 | 5 | subsubrg 19839 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘ℝfld) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℝ))) |
7 | 4, 6 | ax-mp 5 | . . . . 5 ⊢ (ℤ ∈ (SubRing‘ℝfld) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℝ)) |
8 | 1, 2, 7 | mpbir2an 711 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℝfld) |
9 | subrgsubg 19819 | . . . 4 ⊢ (ℤ ∈ (SubRing‘ℝfld) → ℤ ∈ (SubGrp‘ℝfld)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ℤ ∈ (SubGrp‘ℝfld) |
11 | simpl 486 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ) | |
12 | 11 | recnd 10874 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ) |
13 | simpr 488 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
14 | 13 | recnd 10874 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
15 | 12, 14 | addcomd 11047 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
16 | 15 | eleq1d 2823 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ)) |
17 | 16 | rgen2 3125 | . . 3 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ) |
18 | rebase 20581 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
19 | replusg 20585 | . . . 4 ⊢ + = (+g‘ℝfld) | |
20 | 18, 19 | isnsg 18584 | . . 3 ⊢ (ℤ ∈ (NrmSGrp‘ℝfld) ↔ (ℤ ∈ (SubGrp‘ℝfld) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ))) |
21 | 10, 17, 20 | mpbir2an 711 | . 2 ⊢ ℤ ∈ (NrmSGrp‘ℝfld) |
22 | rzgrp.r | . . 3 ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) | |
23 | 22 | qusgrp 18612 | . 2 ⊢ (ℤ ∈ (NrmSGrp‘ℝfld) → 𝑅 ∈ Grp) |
24 | 21, 23 | ax-mp 5 | 1 ⊢ 𝑅 ∈ Grp |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ∀wral 3062 ⊆ wss 3875 ‘cfv 6389 (class class class)co 7222 ℝcr 10741 + caddc 10745 ℤcz 12189 /s cqus 17023 Grpcgrp 18378 SubGrpcsubg 18550 NrmSGrpcnsg 18551 ~QG cqg 18552 DivRingcdr 19780 SubRingcsubrg 19809 ℂfldccnfld 20376 ℝfldcrefld 20579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-addf 10821 ax-mulf 10822 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-tpos 7977 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-ec 8402 df-qs 8406 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-sup 9071 df-inf 9072 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-7 11911 df-8 11912 df-9 11913 df-n0 12104 df-z 12190 df-dec 12307 df-uz 12452 df-fz 13109 df-struct 16713 df-sets 16730 df-slot 16748 df-ndx 16758 df-base 16774 df-ress 16798 df-plusg 16828 df-mulr 16829 df-starv 16830 df-sca 16831 df-vsca 16832 df-ip 16833 df-tset 16834 df-ple 16835 df-ds 16837 df-unif 16838 df-0g 16959 df-imas 17026 df-qus 17027 df-mgm 18127 df-sgrp 18176 df-mnd 18187 df-grp 18381 df-minusg 18382 df-subg 18553 df-nsg 18554 df-eqg 18555 df-cmn 19185 df-mgp 19518 df-ur 19530 df-ring 19577 df-cring 19578 df-oppr 19654 df-dvdsr 19672 df-unit 19673 df-invr 19703 df-dvr 19714 df-drng 19782 df-subrg 19811 df-cnfld 20377 df-refld 20580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |