MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rzgrp Structured version   Visualization version   GIF version

Theorem rzgrp 21659
Description: The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypothesis
Ref Expression
rzgrp.r 𝑅 = (ℝfld /s (ℝfld ~QG ℤ))
Assertion
Ref Expression
rzgrp 𝑅 ∈ Grp

Proof of Theorem rzgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsubrg 21456 . . . . 5 ℤ ∈ (SubRing‘ℂfld)
2 zssre 12618 . . . . 5 ℤ ⊆ ℝ
3 resubdrg 21644 . . . . . . 7 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
43simpli 483 . . . . . 6 ℝ ∈ (SubRing‘ℂfld)
5 df-refld 21641 . . . . . . 7 fld = (ℂflds ℝ)
65subsubrg 20615 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘ℝfld) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℝ)))
74, 6ax-mp 5 . . . . 5 (ℤ ∈ (SubRing‘ℝfld) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℝ))
81, 2, 7mpbir2an 711 . . . 4 ℤ ∈ (SubRing‘ℝfld)
9 subrgsubg 20594 . . . 4 (ℤ ∈ (SubRing‘ℝfld) → ℤ ∈ (SubGrp‘ℝfld))
108, 9ax-mp 5 . . 3 ℤ ∈ (SubGrp‘ℝfld)
11 simpl 482 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
1211recnd 11287 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
13 simpr 484 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1413recnd 11287 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1512, 14addcomd 11461 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1615eleq1d 2824 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ))
1716rgen2 3197 . . 3 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ)
18 rebase 21642 . . . 4 ℝ = (Base‘ℝfld)
19 replusg 21646 . . . 4 + = (+g‘ℝfld)
2018, 19isnsg 19186 . . 3 (ℤ ∈ (NrmSGrp‘ℝfld) ↔ (ℤ ∈ (SubGrp‘ℝfld) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ)))
2110, 17, 20mpbir2an 711 . 2 ℤ ∈ (NrmSGrp‘ℝfld)
22 rzgrp.r . . 3 𝑅 = (ℝfld /s (ℝfld ~QG ℤ))
2322qusgrp 19217 . 2 (ℤ ∈ (NrmSGrp‘ℝfld) → 𝑅 ∈ Grp)
2421, 23ax-mp 5 1 𝑅 ∈ Grp
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  cfv 6563  (class class class)co 7431  cr 11152   + caddc 11156  cz 12611   /s cqus 17552  Grpcgrp 18964  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153  SubRingcsubrg 20586  DivRingcdr 20746  fldccnfld 21382  fldcrefld 21640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-nsg 19155  df-eqg 19156  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrng 20563  df-subrg 20587  df-drng 20748  df-cnfld 21383  df-refld 21641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator