| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rzgrp | Structured version Visualization version GIF version | ||
| Description: The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| rzgrp.r | ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) |
| Ref | Expression |
|---|---|
| rzgrp | ⊢ 𝑅 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubrg 21313 | . . . . 5 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 2 | zssre 12512 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 3 | resubdrg 21493 | . . . . . . 7 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 4 | 3 | simpli 483 | . . . . . 6 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 5 | df-refld 21490 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 6 | 5 | subsubrg 20483 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → (ℤ ∈ (SubRing‘ℝfld) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℝ))) |
| 7 | 4, 6 | ax-mp 5 | . . . . 5 ⊢ (ℤ ∈ (SubRing‘ℝfld) ↔ (ℤ ∈ (SubRing‘ℂfld) ∧ ℤ ⊆ ℝ)) |
| 8 | 1, 2, 7 | mpbir2an 711 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℝfld) |
| 9 | subrgsubg 20462 | . . . 4 ⊢ (ℤ ∈ (SubRing‘ℝfld) → ℤ ∈ (SubGrp‘ℝfld)) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ℤ ∈ (SubGrp‘ℝfld) |
| 11 | simpl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 12 | 11 | recnd 11178 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 13 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 14 | 13 | recnd 11178 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
| 15 | 12, 14 | addcomd 11352 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 16 | 15 | eleq1d 2813 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ)) |
| 17 | 16 | rgen2 3175 | . . 3 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ) |
| 18 | rebase 21491 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 19 | replusg 21495 | . . . 4 ⊢ + = (+g‘ℝfld) | |
| 20 | 18, 19 | isnsg 19063 | . . 3 ⊢ (ℤ ∈ (NrmSGrp‘ℝfld) ↔ (ℤ ∈ (SubGrp‘ℝfld) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((𝑥 + 𝑦) ∈ ℤ ↔ (𝑦 + 𝑥) ∈ ℤ))) |
| 21 | 10, 17, 20 | mpbir2an 711 | . 2 ⊢ ℤ ∈ (NrmSGrp‘ℝfld) |
| 22 | rzgrp.r | . . 3 ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) | |
| 23 | 22 | qusgrp 19094 | . 2 ⊢ (ℤ ∈ (NrmSGrp‘ℝfld) → 𝑅 ∈ Grp) |
| 24 | 21, 23 | ax-mp 5 | 1 ⊢ 𝑅 ∈ Grp |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 + caddc 11047 ℤcz 12505 /s cqus 17444 Grpcgrp 18841 SubGrpcsubg 19028 NrmSGrpcnsg 19029 ~QG cqg 19030 SubRingcsubrg 20454 DivRingcdr 20614 ℂfldccnfld 21240 ℝfldcrefld 21489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-imas 17447 df-qus 17448 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-nsg 19032 df-eqg 19033 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-subrng 20431 df-subrg 20455 df-drng 20616 df-cnfld 21241 df-refld 21490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |