| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > redvr | Structured version Visualization version GIF version | ||
| Description: The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| Ref | Expression |
|---|---|
| redvr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubdrg 21568 | . . . 4 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 2 | 1 | simpli 483 | . . 3 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 3 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ) | |
| 4 | 3simpc 1150 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 5 | 1 | simpri 485 | . . . . 5 ⊢ ℝfld ∈ DivRing |
| 6 | rebase 21566 | . . . . . 6 ⊢ ℝ = (Base‘ℝfld) | |
| 7 | eqid 2735 | . . . . . 6 ⊢ (Unit‘ℝfld) = (Unit‘ℝfld) | |
| 8 | re0g 21572 | . . . . . 6 ⊢ 0 = (0g‘ℝfld) | |
| 9 | 6, 7, 8 | drngunit 20694 | . . . . 5 ⊢ (ℝfld ∈ DivRing → (𝐵 ∈ (Unit‘ℝfld) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))) |
| 10 | 5, 9 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ (Unit‘ℝfld) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) |
| 11 | 4, 10 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ (Unit‘ℝfld)) |
| 12 | df-refld 21565 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 13 | cnflddiv 21363 | . . . 4 ⊢ / = (/r‘ℂfld) | |
| 14 | eqid 2735 | . . . 4 ⊢ (/r‘ℝfld) = (/r‘ℝfld) | |
| 15 | 12, 13, 7, 14 | subrgdv 20549 | . . 3 ⊢ ((ℝ ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ (Unit‘ℝfld)) → (𝐴 / 𝐵) = (𝐴(/r‘ℝfld)𝐵)) |
| 16 | 2, 3, 11, 15 | mp3an2i 1468 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴(/r‘ℝfld)𝐵)) |
| 17 | 16 | eqcomd 2741 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 / cdiv 11894 Unitcui 20315 /rcdvr 20360 SubRingcsubrg 20529 DivRingcdr 20689 ℂfldccnfld 21315 ℝfldcrefld 21564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-subrng 20506 df-subrg 20530 df-drng 20691 df-cnfld 21316 df-refld 21565 |
| This theorem is referenced by: qqhre 34051 |
| Copyright terms: Public domain | W3C validator |