![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > redvr | Structured version Visualization version GIF version |
Description: The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
Ref | Expression |
---|---|
redvr | β’ ((π΄ β β β§ π΅ β β β§ π΅ β 0) β (π΄(/rββfld)π΅) = (π΄ / π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubdrg 21469 | . . . 4 β’ (β β (SubRingββfld) β§ βfld β DivRing) | |
2 | 1 | simpli 483 | . . 3 β’ β β (SubRingββfld) |
3 | simp1 1133 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ π΅ β 0) β π΄ β β) | |
4 | 3simpc 1147 | . . . 4 β’ ((π΄ β β β§ π΅ β β β§ π΅ β 0) β (π΅ β β β§ π΅ β 0)) | |
5 | 1 | simpri 485 | . . . . 5 β’ βfld β DivRing |
6 | rebase 21467 | . . . . . 6 β’ β = (Baseββfld) | |
7 | eqid 2724 | . . . . . 6 β’ (Unitββfld) = (Unitββfld) | |
8 | re0g 21473 | . . . . . 6 β’ 0 = (0gββfld) | |
9 | 6, 7, 8 | drngunit 20582 | . . . . 5 β’ (βfld β DivRing β (π΅ β (Unitββfld) β (π΅ β β β§ π΅ β 0))) |
10 | 5, 9 | ax-mp 5 | . . . 4 β’ (π΅ β (Unitββfld) β (π΅ β β β§ π΅ β 0)) |
11 | 4, 10 | sylibr 233 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ π΅ β 0) β π΅ β (Unitββfld)) |
12 | df-refld 21466 | . . . 4 β’ βfld = (βfld βΎs β) | |
13 | cnflddiv 21259 | . . . 4 β’ / = (/rββfld) | |
14 | eqid 2724 | . . . 4 β’ (/rββfld) = (/rββfld) | |
15 | 12, 13, 7, 14 | subrgdv 20481 | . . 3 β’ ((β β (SubRingββfld) β§ π΄ β β β§ π΅ β (Unitββfld)) β (π΄ / π΅) = (π΄(/rββfld)π΅)) |
16 | 2, 3, 11, 15 | mp3an2i 1462 | . 2 β’ ((π΄ β β β§ π΅ β β β§ π΅ β 0) β (π΄ / π΅) = (π΄(/rββfld)π΅)) |
17 | 16 | eqcomd 2730 | 1 β’ ((π΄ β β β§ π΅ β β β§ π΅ β 0) β (π΄(/rββfld)π΅) = (π΄ / π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 βcfv 6533 (class class class)co 7401 βcr 11105 0cc0 11106 / cdiv 11868 Unitcui 20247 /rcdvr 20292 SubRingcsubrg 20459 DivRingcdr 20577 βfldccnfld 21228 βfldcrefld 21465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-subrng 20436 df-subrg 20461 df-drng 20579 df-cnfld 21229 df-refld 21466 |
This theorem is referenced by: qqhre 33489 |
Copyright terms: Public domain | W3C validator |