| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2omomeqom | Structured version Visualization version GIF version | ||
| Description: Ordinal two times omega is omega. Lemma 3.17 of [Schloeder] p. 10. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| 2omomeqom | ⊢ (2o ·o ω) = ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9599 | . 2 ⊢ ω ∈ On | |
| 2 | 2onn 8606 | . 2 ⊢ 2o ∈ ω | |
| 3 | 0ex 5262 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 3 | prid1 4726 | . . 3 ⊢ ∅ ∈ {∅, {∅}} |
| 5 | df2o2 8443 | . . 3 ⊢ 2o = {∅, {∅}} | |
| 6 | 4, 5 | eleqtrri 2827 | . 2 ⊢ ∅ ∈ 2o |
| 7 | omabslem 8614 | . 2 ⊢ ((ω ∈ On ∧ 2o ∈ ω ∧ ∅ ∈ 2o) → (2o ·o ω) = ω) | |
| 8 | 1, 2, 6, 7 | mp3an 1463 | 1 ⊢ (2o ·o ω) = ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4296 {csn 4589 {cpr 4591 Oncon0 6332 (class class class)co 7387 ωcom 7842 2oc2o 8428 ·o comu 8432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 |
| This theorem is referenced by: omnord1ex 43293 oaomoencom 43306 |
| Copyright terms: Public domain | W3C validator |