Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2omomeqom Structured version   Visualization version   GIF version

Theorem 2omomeqom 43321
Description: Ordinal two times omega is omega. Lemma 3.17 of [Schloeder] p. 10. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
2omomeqom (2o ·o ω) = ω

Proof of Theorem 2omomeqom
StepHypRef Expression
1 omelon 9687 . 2 ω ∈ On
2 2onn 8681 . 2 2o ∈ ω
3 0ex 5306 . . . 4 ∅ ∈ V
43prid1 4761 . . 3 ∅ ∈ {∅, {∅}}
5 df2o2 8516 . . 3 2o = {∅, {∅}}
64, 5eleqtrri 2839 . 2 ∅ ∈ 2o
7 omabslem 8689 . 2 ((ω ∈ On ∧ 2o ∈ ω ∧ ∅ ∈ 2o) → (2o ·o ω) = ω)
81, 2, 6, 7mp3an 1462 1 (2o ·o ω) = ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  c0 4332  {csn 4625  {cpr 4627  Oncon0 6383  (class class class)co 7432  ωcom 7888  2oc2o 8501   ·o comu 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512
This theorem is referenced by:  omnord1ex  43322  oaomoencom  43335
  Copyright terms: Public domain W3C validator