Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1ocnv Structured version   Visualization version   GIF version

Theorem pw2f1ocnv 43010
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9008, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1ocnv (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem pw2f1ocnv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . 2 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
2 vex 3442 . . . 4 𝑥 ∈ V
32cnvex 7865 . . 3 𝑥 ∈ V
4 imaexg 7853 . . 3 (𝑥 ∈ V → (𝑥 “ {1o}) ∈ V)
53, 4mp1i 13 . 2 ((𝐴𝑉𝑥 ∈ (2om 𝐴)) → (𝑥 “ {1o}) ∈ V)
6 mptexg 7161 . . 3 (𝐴𝑉 → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
76adantr 480 . 2 ((𝐴𝑉𝑦 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
8 2on 8408 . . . . . 6 2o ∈ On
9 elmapg 8773 . . . . . 6 ((2o ∈ On ∧ 𝐴𝑉) → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
108, 9mpan 690 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
1110anbi1d 631 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o}))))
12 1oex 8405 . . . . . . . . . . . 12 1o ∈ V
1312sucid 6395 . . . . . . . . . . 11 1o ∈ suc 1o
14 df-2o 8396 . . . . . . . . . . 11 2o = suc 1o
1513, 14eleqtrri 2827 . . . . . . . . . 10 1o ∈ 2o
16 0ex 5249 . . . . . . . . . . . 12 ∅ ∈ V
1716prid1 4716 . . . . . . . . . . 11 ∅ ∈ {∅, {∅}}
18 df2o2 8404 . . . . . . . . . . 11 2o = {∅, {∅}}
1917, 18eleqtrri 2827 . . . . . . . . . 10 ∅ ∈ 2o
2015, 19ifcli 4526 . . . . . . . . 9 if(𝑧𝑦, 1o, ∅) ∈ 2o
2120rgenw 3048 . . . . . . . 8 𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o
22 eqid 2729 . . . . . . . . 9 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))
2322fmpt 7048 . . . . . . . 8 (∀𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o)
2421, 23mpbi 230 . . . . . . 7 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o
25 simpr 484 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
2625feq1d 6638 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o))
2724, 26mpbiri 258 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥:𝐴⟶2o)
28 iftrue 4484 . . . . . . . . . . . 12 (𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = 1o)
29 noel 4291 . . . . . . . . . . . . . 14 ¬ ∅ ∈ ∅
30 iffalse 4487 . . . . . . . . . . . . . . . 16 𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = ∅)
3130eqeq1d 2731 . . . . . . . . . . . . . . 15 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o ↔ ∅ = 1o))
32 0lt1o 8429 . . . . . . . . . . . . . . . 16 ∅ ∈ 1o
33 eleq2 2817 . . . . . . . . . . . . . . . 16 (∅ = 1o → (∅ ∈ ∅ ↔ ∅ ∈ 1o))
3432, 33mpbiri 258 . . . . . . . . . . . . . . 15 (∅ = 1o → ∅ ∈ ∅)
3531, 34biimtrdi 253 . . . . . . . . . . . . . 14 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o → ∅ ∈ ∅))
3629, 35mtoi 199 . . . . . . . . . . . . 13 𝑤𝑦 → ¬ if(𝑤𝑦, 1o, ∅) = 1o)
3736con4i 114 . . . . . . . . . . . 12 (if(𝑤𝑦, 1o, ∅) = 1o𝑤𝑦)
3828, 37impbii 209 . . . . . . . . . . 11 (𝑤𝑦 ↔ if(𝑤𝑦, 1o, ∅) = 1o)
3925fveq1d 6828 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
40 elequ1 2116 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
4140ifbid 4502 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → if(𝑧𝑦, 1o, ∅) = if(𝑤𝑦, 1o, ∅))
4212, 16ifcli 4526 . . . . . . . . . . . . . 14 if(𝑤𝑦, 1o, ∅) ∈ V
4341, 22, 42fvmpt 6934 . . . . . . . . . . . . 13 (𝑤𝐴 → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
4439, 43sylan9eq 2784 . . . . . . . . . . . 12 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
4544eqeq1d 2731 . . . . . . . . . . 11 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o ↔ if(𝑤𝑦, 1o, ∅) = 1o))
4638, 45bitr4id 290 . . . . . . . . . 10 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
47 fvex 6839 . . . . . . . . . . 11 (𝑥𝑤) ∈ V
4847elsn 4594 . . . . . . . . . 10 ((𝑥𝑤) ∈ {1o} ↔ (𝑥𝑤) = 1o)
4946, 48bitr4di 289 . . . . . . . . 9 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) ∈ {1o}))
5049pm5.32da 579 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → ((𝑤𝐴𝑤𝑦) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
51 ssel 3931 . . . . . . . . . 10 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
5251adantr 480 . . . . . . . . 9 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤𝐴))
5352pm4.71rd 562 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦 ↔ (𝑤𝐴𝑤𝑦)))
54 ffn 6656 . . . . . . . . 9 (𝑥:𝐴⟶2o𝑥 Fn 𝐴)
55 elpreima 6996 . . . . . . . . 9 (𝑥 Fn 𝐴 → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5627, 54, 553syl 18 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5750, 53, 563bitr4d 311 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
5857eqrdv 2727 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑦 = (𝑥 “ {1o}))
5927, 58jca 511 . . . . 5 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
60 simpr 484 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦 = (𝑥 “ {1o}))
61 cnvimass 6037 . . . . . . . 8 (𝑥 “ {1o}) ⊆ dom 𝑥
62 fdm 6665 . . . . . . . . 9 (𝑥:𝐴⟶2o → dom 𝑥 = 𝐴)
6362adantr 480 . . . . . . . 8 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → dom 𝑥 = 𝐴)
6461, 63sseqtrid 3980 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 “ {1o}) ⊆ 𝐴)
6560, 64eqsstrd 3972 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦𝐴)
66 simplr 768 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → 𝑦 = (𝑥 “ {1o}))
6766eleq2d 2814 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
6854adantr 480 . . . . . . . . . . . . . . 15 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 Fn 𝐴)
69 fnbrfvb 6877 . . . . . . . . . . . . . . 15 ((𝑥 Fn 𝐴𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
7068, 69sylan 580 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
71 1on 8407 . . . . . . . . . . . . . . 15 1o ∈ On
72 vex 3442 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
7372eliniseg 6049 . . . . . . . . . . . . . . 15 (1o ∈ On → (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o))
7471, 73ax-mp 5 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o)
7570, 74bitr4di 289 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤 ∈ (𝑥 “ {1o})))
7667, 75bitr4d 282 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
7776biimpa 476 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = 1o)
7828adantl 481 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = 1o)
7977, 78eqtr4d 2767 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
80 ffvelcdm 7019 . . . . . . . . . . . . . . . . . 18 ((𝑥:𝐴⟶2o𝑤𝐴) → (𝑥𝑤) ∈ 2o)
8180adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ 2o)
82 df2o3 8403 . . . . . . . . . . . . . . . . 17 2o = {∅, 1o}
8381, 82eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ {∅, 1o})
8447elpr 4604 . . . . . . . . . . . . . . . 16 ((𝑥𝑤) ∈ {∅, 1o} ↔ ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8583, 84sylib 218 . . . . . . . . . . . . . . 15 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8685ord 864 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → (𝑥𝑤) = 1o))
8786, 76sylibrd 259 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → 𝑤𝑦))
8887con1d 145 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ 𝑤𝑦 → (𝑥𝑤) = ∅))
8988imp 406 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = ∅)
9030adantl 481 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = ∅)
9189, 90eqtr4d 2767 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9279, 91pm2.61dan 812 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9343adantl 481 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
9492, 93eqtr4d 2767 . . . . . . . 8 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
9594ralrimiva 3121 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
96 ffn 6656 . . . . . . . . 9 ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴)
9724, 96ax-mp 5 . . . . . . . 8 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴
98 eqfnfv 6969 . . . . . . . 8 ((𝑥 Fn 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
9968, 97, 98sylancl 586 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
10095, 99mpbird 257 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
10165, 100jca 511 . . . . 5 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
10259, 101impbii 209 . . . 4 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
10311, 102bitr4di 289 . . 3 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
104 velpw 4558 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
105104anbi1i 624 . . 3 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
106103, 105bitr4di 289 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
1071, 5, 7, 106f1ocnvd 7604 1 (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  c0 4286  ifcif 4478  𝒫 cpw 4553  {csn 4579  {cpr 4581   class class class wbr 5095  cmpt 5176  ccnv 5622  dom cdm 5623  cima 5626  Oncon0 6311  suc csuc 6313   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  1oc1o 8388  2oc2o 8389  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1o 8395  df-2o 8396  df-map 8762
This theorem is referenced by:  pw2f1o2  43011
  Copyright terms: Public domain W3C validator