Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1ocnv Structured version   Visualization version   GIF version

Theorem pw2f1ocnv 40775
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 8819, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1ocnv (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem pw2f1ocnv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . 2 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
2 vex 3426 . . . 4 𝑥 ∈ V
32cnvex 7746 . . 3 𝑥 ∈ V
4 imaexg 7736 . . 3 (𝑥 ∈ V → (𝑥 “ {1o}) ∈ V)
53, 4mp1i 13 . 2 ((𝐴𝑉𝑥 ∈ (2om 𝐴)) → (𝑥 “ {1o}) ∈ V)
6 mptexg 7079 . . 3 (𝐴𝑉 → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
76adantr 480 . 2 ((𝐴𝑉𝑦 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
8 2on 8275 . . . . . 6 2o ∈ On
9 elmapg 8586 . . . . . 6 ((2o ∈ On ∧ 𝐴𝑉) → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
108, 9mpan 686 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
1110anbi1d 629 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o}))))
12 1oex 8280 . . . . . . . . . . . 12 1o ∈ V
1312sucid 6330 . . . . . . . . . . 11 1o ∈ suc 1o
14 df-2o 8268 . . . . . . . . . . 11 2o = suc 1o
1513, 14eleqtrri 2838 . . . . . . . . . 10 1o ∈ 2o
16 0ex 5226 . . . . . . . . . . . 12 ∅ ∈ V
1716prid1 4695 . . . . . . . . . . 11 ∅ ∈ {∅, {∅}}
18 df2o2 8283 . . . . . . . . . . 11 2o = {∅, {∅}}
1917, 18eleqtrri 2838 . . . . . . . . . 10 ∅ ∈ 2o
2015, 19ifcli 4503 . . . . . . . . 9 if(𝑧𝑦, 1o, ∅) ∈ 2o
2120rgenw 3075 . . . . . . . 8 𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o
22 eqid 2738 . . . . . . . . 9 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))
2322fmpt 6966 . . . . . . . 8 (∀𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o)
2421, 23mpbi 229 . . . . . . 7 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o
25 simpr 484 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
2625feq1d 6569 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o))
2724, 26mpbiri 257 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥:𝐴⟶2o)
28 iftrue 4462 . . . . . . . . . . . 12 (𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = 1o)
29 noel 4261 . . . . . . . . . . . . . 14 ¬ ∅ ∈ ∅
30 iffalse 4465 . . . . . . . . . . . . . . . 16 𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = ∅)
3130eqeq1d 2740 . . . . . . . . . . . . . . 15 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o ↔ ∅ = 1o))
32 0lt1o 8296 . . . . . . . . . . . . . . . 16 ∅ ∈ 1o
33 eleq2 2827 . . . . . . . . . . . . . . . 16 (∅ = 1o → (∅ ∈ ∅ ↔ ∅ ∈ 1o))
3432, 33mpbiri 257 . . . . . . . . . . . . . . 15 (∅ = 1o → ∅ ∈ ∅)
3531, 34syl6bi 252 . . . . . . . . . . . . . 14 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o → ∅ ∈ ∅))
3629, 35mtoi 198 . . . . . . . . . . . . 13 𝑤𝑦 → ¬ if(𝑤𝑦, 1o, ∅) = 1o)
3736con4i 114 . . . . . . . . . . . 12 (if(𝑤𝑦, 1o, ∅) = 1o𝑤𝑦)
3828, 37impbii 208 . . . . . . . . . . 11 (𝑤𝑦 ↔ if(𝑤𝑦, 1o, ∅) = 1o)
3925fveq1d 6758 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
40 elequ1 2115 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
4140ifbid 4479 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → if(𝑧𝑦, 1o, ∅) = if(𝑤𝑦, 1o, ∅))
4212, 16ifcli 4503 . . . . . . . . . . . . . 14 if(𝑤𝑦, 1o, ∅) ∈ V
4341, 22, 42fvmpt 6857 . . . . . . . . . . . . 13 (𝑤𝐴 → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
4439, 43sylan9eq 2799 . . . . . . . . . . . 12 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
4544eqeq1d 2740 . . . . . . . . . . 11 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o ↔ if(𝑤𝑦, 1o, ∅) = 1o))
4638, 45bitr4id 289 . . . . . . . . . 10 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
47 fvex 6769 . . . . . . . . . . 11 (𝑥𝑤) ∈ V
4847elsn 4573 . . . . . . . . . 10 ((𝑥𝑤) ∈ {1o} ↔ (𝑥𝑤) = 1o)
4946, 48bitr4di 288 . . . . . . . . 9 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) ∈ {1o}))
5049pm5.32da 578 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → ((𝑤𝐴𝑤𝑦) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
51 ssel 3910 . . . . . . . . . 10 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
5251adantr 480 . . . . . . . . 9 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤𝐴))
5352pm4.71rd 562 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦 ↔ (𝑤𝐴𝑤𝑦)))
54 ffn 6584 . . . . . . . . 9 (𝑥:𝐴⟶2o𝑥 Fn 𝐴)
55 elpreima 6917 . . . . . . . . 9 (𝑥 Fn 𝐴 → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5627, 54, 553syl 18 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5750, 53, 563bitr4d 310 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
5857eqrdv 2736 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑦 = (𝑥 “ {1o}))
5927, 58jca 511 . . . . 5 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
60 simpr 484 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦 = (𝑥 “ {1o}))
61 cnvimass 5978 . . . . . . . 8 (𝑥 “ {1o}) ⊆ dom 𝑥
62 fdm 6593 . . . . . . . . 9 (𝑥:𝐴⟶2o → dom 𝑥 = 𝐴)
6362adantr 480 . . . . . . . 8 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → dom 𝑥 = 𝐴)
6461, 63sseqtrid 3969 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 “ {1o}) ⊆ 𝐴)
6560, 64eqsstrd 3955 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦𝐴)
66 simplr 765 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → 𝑦 = (𝑥 “ {1o}))
6766eleq2d 2824 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
6854adantr 480 . . . . . . . . . . . . . . 15 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 Fn 𝐴)
69 fnbrfvb 6804 . . . . . . . . . . . . . . 15 ((𝑥 Fn 𝐴𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
7068, 69sylan 579 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
71 1on 8274 . . . . . . . . . . . . . . 15 1o ∈ On
72 vex 3426 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
7372eliniseg 5991 . . . . . . . . . . . . . . 15 (1o ∈ On → (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o))
7471, 73ax-mp 5 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o)
7570, 74bitr4di 288 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤 ∈ (𝑥 “ {1o})))
7667, 75bitr4d 281 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
7776biimpa 476 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = 1o)
7828adantl 481 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = 1o)
7977, 78eqtr4d 2781 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
80 ffvelrn 6941 . . . . . . . . . . . . . . . . . 18 ((𝑥:𝐴⟶2o𝑤𝐴) → (𝑥𝑤) ∈ 2o)
8180adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ 2o)
82 df2o3 8282 . . . . . . . . . . . . . . . . 17 2o = {∅, 1o}
8381, 82eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ {∅, 1o})
8447elpr 4581 . . . . . . . . . . . . . . . 16 ((𝑥𝑤) ∈ {∅, 1o} ↔ ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8583, 84sylib 217 . . . . . . . . . . . . . . 15 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8685ord 860 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → (𝑥𝑤) = 1o))
8786, 76sylibrd 258 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → 𝑤𝑦))
8887con1d 145 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ 𝑤𝑦 → (𝑥𝑤) = ∅))
8988imp 406 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = ∅)
9030adantl 481 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = ∅)
9189, 90eqtr4d 2781 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9279, 91pm2.61dan 809 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9343adantl 481 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
9492, 93eqtr4d 2781 . . . . . . . 8 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
9594ralrimiva 3107 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
96 ffn 6584 . . . . . . . . 9 ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴)
9724, 96ax-mp 5 . . . . . . . 8 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴
98 eqfnfv 6891 . . . . . . . 8 ((𝑥 Fn 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
9968, 97, 98sylancl 585 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
10095, 99mpbird 256 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
10165, 100jca 511 . . . . 5 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
10259, 101impbii 208 . . . 4 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
10311, 102bitr4di 288 . . 3 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
104 velpw 4535 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
105104anbi1i 623 . . 3 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
106103, 105bitr4di 288 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
1071, 5, 7, 106f1ocnvd 7498 1 (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  cima 5583  Oncon0 6251  suc csuc 6253   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1oc1o 8260  2oc2o 8261  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-2o 8268  df-map 8575
This theorem is referenced by:  pw2f1o2  40776
  Copyright terms: Public domain W3C validator