Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1ocnv Structured version   Visualization version   GIF version

Theorem pw2f1ocnv 41858
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9081, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 9-Jul-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1ocnv (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑧)

Proof of Theorem pw2f1ocnv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . 2 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
2 vex 3478 . . . 4 𝑥 ∈ V
32cnvex 7918 . . 3 𝑥 ∈ V
4 imaexg 7908 . . 3 (𝑥 ∈ V → (𝑥 “ {1o}) ∈ V)
53, 4mp1i 13 . 2 ((𝐴𝑉𝑥 ∈ (2om 𝐴)) → (𝑥 “ {1o}) ∈ V)
6 mptexg 7225 . . 3 (𝐴𝑉 → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
76adantr 481 . 2 ((𝐴𝑉𝑦 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ∈ V)
8 2on 8482 . . . . . 6 2o ∈ On
9 elmapg 8835 . . . . . 6 ((2o ∈ On ∧ 𝐴𝑉) → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
108, 9mpan 688 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (2om 𝐴) ↔ 𝑥:𝐴⟶2o))
1110anbi1d 630 . . . 4 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o}))))
12 1oex 8478 . . . . . . . . . . . 12 1o ∈ V
1312sucid 6446 . . . . . . . . . . 11 1o ∈ suc 1o
14 df-2o 8469 . . . . . . . . . . 11 2o = suc 1o
1513, 14eleqtrri 2832 . . . . . . . . . 10 1o ∈ 2o
16 0ex 5307 . . . . . . . . . . . 12 ∅ ∈ V
1716prid1 4766 . . . . . . . . . . 11 ∅ ∈ {∅, {∅}}
18 df2o2 8477 . . . . . . . . . . 11 2o = {∅, {∅}}
1917, 18eleqtrri 2832 . . . . . . . . . 10 ∅ ∈ 2o
2015, 19ifcli 4575 . . . . . . . . 9 if(𝑧𝑦, 1o, ∅) ∈ 2o
2120rgenw 3065 . . . . . . . 8 𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o
22 eqid 2732 . . . . . . . . 9 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))
2322fmpt 7111 . . . . . . . 8 (∀𝑧𝐴 if(𝑧𝑦, 1o, ∅) ∈ 2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o)
2421, 23mpbi 229 . . . . . . 7 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o
25 simpr 485 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
2625feq1d 6702 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ↔ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o))
2724, 26mpbiri 257 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑥:𝐴⟶2o)
28 iftrue 4534 . . . . . . . . . . . 12 (𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = 1o)
29 noel 4330 . . . . . . . . . . . . . 14 ¬ ∅ ∈ ∅
30 iffalse 4537 . . . . . . . . . . . . . . . 16 𝑤𝑦 → if(𝑤𝑦, 1o, ∅) = ∅)
3130eqeq1d 2734 . . . . . . . . . . . . . . 15 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o ↔ ∅ = 1o))
32 0lt1o 8506 . . . . . . . . . . . . . . . 16 ∅ ∈ 1o
33 eleq2 2822 . . . . . . . . . . . . . . . 16 (∅ = 1o → (∅ ∈ ∅ ↔ ∅ ∈ 1o))
3432, 33mpbiri 257 . . . . . . . . . . . . . . 15 (∅ = 1o → ∅ ∈ ∅)
3531, 34syl6bi 252 . . . . . . . . . . . . . 14 𝑤𝑦 → (if(𝑤𝑦, 1o, ∅) = 1o → ∅ ∈ ∅))
3629, 35mtoi 198 . . . . . . . . . . . . 13 𝑤𝑦 → ¬ if(𝑤𝑦, 1o, ∅) = 1o)
3736con4i 114 . . . . . . . . . . . 12 (if(𝑤𝑦, 1o, ∅) = 1o𝑤𝑦)
3828, 37impbii 208 . . . . . . . . . . 11 (𝑤𝑦 ↔ if(𝑤𝑦, 1o, ∅) = 1o)
3925fveq1d 6893 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
40 elequ1 2113 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
4140ifbid 4551 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → if(𝑧𝑦, 1o, ∅) = if(𝑤𝑦, 1o, ∅))
4212, 16ifcli 4575 . . . . . . . . . . . . . 14 if(𝑤𝑦, 1o, ∅) ∈ V
4341, 22, 42fvmpt 6998 . . . . . . . . . . . . 13 (𝑤𝐴 → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
4439, 43sylan9eq 2792 . . . . . . . . . . . 12 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
4544eqeq1d 2734 . . . . . . . . . . 11 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o ↔ if(𝑤𝑦, 1o, ∅) = 1o))
4638, 45bitr4id 289 . . . . . . . . . 10 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
47 fvex 6904 . . . . . . . . . . 11 (𝑥𝑤) ∈ V
4847elsn 4643 . . . . . . . . . 10 ((𝑥𝑤) ∈ {1o} ↔ (𝑥𝑤) = 1o)
4946, 48bitr4di 288 . . . . . . . . 9 (((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) ∈ {1o}))
5049pm5.32da 579 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → ((𝑤𝐴𝑤𝑦) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
51 ssel 3975 . . . . . . . . . 10 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
5251adantr 481 . . . . . . . . 9 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤𝐴))
5352pm4.71rd 563 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦 ↔ (𝑤𝐴𝑤𝑦)))
54 ffn 6717 . . . . . . . . 9 (𝑥:𝐴⟶2o𝑥 Fn 𝐴)
55 elpreima 7059 . . . . . . . . 9 (𝑥 Fn 𝐴 → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5627, 54, 553syl 18 . . . . . . . 8 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤 ∈ (𝑥 “ {1o}) ↔ (𝑤𝐴 ∧ (𝑥𝑤) ∈ {1o})))
5750, 53, 563bitr4d 310 . . . . . . 7 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
5857eqrdv 2730 . . . . . 6 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → 𝑦 = (𝑥 “ {1o}))
5927, 58jca 512 . . . . 5 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
60 simpr 485 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦 = (𝑥 “ {1o}))
61 cnvimass 6080 . . . . . . . 8 (𝑥 “ {1o}) ⊆ dom 𝑥
62 fdm 6726 . . . . . . . . 9 (𝑥:𝐴⟶2o → dom 𝑥 = 𝐴)
6362adantr 481 . . . . . . . 8 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → dom 𝑥 = 𝐴)
6461, 63sseqtrid 4034 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 “ {1o}) ⊆ 𝐴)
6560, 64eqsstrd 4020 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑦𝐴)
66 simplr 767 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → 𝑦 = (𝑥 “ {1o}))
6766eleq2d 2819 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦𝑤 ∈ (𝑥 “ {1o})))
6854adantr 481 . . . . . . . . . . . . . . 15 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 Fn 𝐴)
69 fnbrfvb 6944 . . . . . . . . . . . . . . 15 ((𝑥 Fn 𝐴𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
7068, 69sylan 580 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤𝑥1o))
71 1on 8480 . . . . . . . . . . . . . . 15 1o ∈ On
72 vex 3478 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
7372eliniseg 6093 . . . . . . . . . . . . . . 15 (1o ∈ On → (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o))
7471, 73ax-mp 5 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑥 “ {1o}) ↔ 𝑤𝑥1o)
7570, 74bitr4di 288 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = 1o𝑤 ∈ (𝑥 “ {1o})))
7667, 75bitr4d 281 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑤𝑦 ↔ (𝑥𝑤) = 1o))
7776biimpa 477 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = 1o)
7828adantl 482 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = 1o)
7977, 78eqtr4d 2775 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
80 ffvelcdm 7083 . . . . . . . . . . . . . . . . . 18 ((𝑥:𝐴⟶2o𝑤𝐴) → (𝑥𝑤) ∈ 2o)
8180adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ 2o)
82 df2o3 8476 . . . . . . . . . . . . . . . . 17 2o = {∅, 1o}
8381, 82eleqtrdi 2843 . . . . . . . . . . . . . . . 16 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) ∈ {∅, 1o})
8447elpr 4651 . . . . . . . . . . . . . . . 16 ((𝑥𝑤) ∈ {∅, 1o} ↔ ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8583, 84sylib 217 . . . . . . . . . . . . . . 15 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑥𝑤) = ∅ ∨ (𝑥𝑤) = 1o))
8685ord 862 . . . . . . . . . . . . . 14 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → (𝑥𝑤) = 1o))
8786, 76sylibrd 258 . . . . . . . . . . . . 13 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ (𝑥𝑤) = ∅ → 𝑤𝑦))
8887con1d 145 . . . . . . . . . . . 12 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (¬ 𝑤𝑦 → (𝑥𝑤) = ∅))
8988imp 407 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = ∅)
9030adantl 482 . . . . . . . . . . 11 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → if(𝑤𝑦, 1o, ∅) = ∅)
9189, 90eqtr4d 2775 . . . . . . . . . 10 ((((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) ∧ ¬ 𝑤𝑦) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9279, 91pm2.61dan 811 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = if(𝑤𝑦, 1o, ∅))
9343adantl 482 . . . . . . . . 9 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤) = if(𝑤𝑦, 1o, ∅))
9492, 93eqtr4d 2775 . . . . . . . 8 (((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) ∧ 𝑤𝐴) → (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
9594ralrimiva 3146 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤))
96 ffn 6717 . . . . . . . . 9 ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)):𝐴⟶2o → (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴)
9724, 96ax-mp 5 . . . . . . . 8 (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴
98 eqfnfv 7032 . . . . . . . 8 ((𝑥 Fn 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) Fn 𝐴) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
9968, 97, 98sylancl 586 . . . . . . 7 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)) ↔ ∀𝑤𝐴 (𝑥𝑤) = ((𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))‘𝑤)))
10095, 99mpbird 256 . . . . . 6 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → 𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))
10165, 100jca 512 . . . . 5 ((𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})) → (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
10259, 101impbii 208 . . . 4 ((𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑥:𝐴⟶2o𝑦 = (𝑥 “ {1o})))
10311, 102bitr4di 288 . . 3 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
104 velpw 4607 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
105104anbi1i 624 . . 3 ((𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))) ↔ (𝑦𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅))))
106103, 105bitr4di 288 . 2 (𝐴𝑉 → ((𝑥 ∈ (2om 𝐴) ∧ 𝑦 = (𝑥 “ {1o})) ↔ (𝑦 ∈ 𝒫 𝐴𝑥 = (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
1071, 5, 7, 106f1ocnvd 7659 1 (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  wss 3948  c0 4322  ifcif 4528  𝒫 cpw 4602  {csn 4628  {cpr 4630   class class class wbr 5148  cmpt 5231  ccnv 5675  dom cdm 5676  cima 5679  Oncon0 6364  suc csuc 6366   Fn wfn 6538  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7411  1oc1o 8461  2oc2o 8462  m cmap 8822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1o 8468  df-2o 8469  df-map 8824
This theorem is referenced by:  pw2f1o2  41859
  Copyright terms: Public domain W3C validator