| Step | Hyp | Ref
| Expression |
| 1 | | pw2f1o2.f |
. 2
⊢ 𝐹 = (𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) |
| 2 | | vex 3468 |
. . . 4
⊢ 𝑥 ∈ V |
| 3 | 2 | cnvex 7926 |
. . 3
⊢ ◡𝑥 ∈ V |
| 4 | | imaexg 7914 |
. . 3
⊢ (◡𝑥 ∈ V → (◡𝑥 “ {1o}) ∈
V) |
| 5 | 3, 4 | mp1i 13 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (2o ↑m
𝐴)) → (◡𝑥 “ {1o}) ∈
V) |
| 6 | | mptexg 7218 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ∈
V) |
| 7 | 6 | adantr 480 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ∈
V) |
| 8 | | 2on 8499 |
. . . . . 6
⊢
2o ∈ On |
| 9 | | elmapg 8858 |
. . . . . 6
⊢
((2o ∈ On ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (2o ↑m
𝐴) ↔ 𝑥:𝐴⟶2o)) |
| 10 | 8, 9 | mpan 690 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2o ↑m
𝐴) ↔ 𝑥:𝐴⟶2o)) |
| 11 | 10 | anbi1d 631 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ∧ 𝑦 = (◡𝑥 “ {1o})) ↔ (𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})))) |
| 12 | | 1oex 8495 |
. . . . . . . . . . . 12
⊢
1o ∈ V |
| 13 | 12 | sucid 6441 |
. . . . . . . . . . 11
⊢
1o ∈ suc 1o |
| 14 | | df-2o 8486 |
. . . . . . . . . . 11
⊢
2o = suc 1o |
| 15 | 13, 14 | eleqtrri 2834 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
| 16 | | 0ex 5282 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 17 | 16 | prid1 4743 |
. . . . . . . . . . 11
⊢ ∅
∈ {∅, {∅}} |
| 18 | | df2o2 8494 |
. . . . . . . . . . 11
⊢
2o = {∅, {∅}} |
| 19 | 17, 18 | eleqtrri 2834 |
. . . . . . . . . 10
⊢ ∅
∈ 2o |
| 20 | 15, 19 | ifcli 4553 |
. . . . . . . . 9
⊢ if(𝑧 ∈ 𝑦, 1o, ∅) ∈
2o |
| 21 | 20 | rgenw 3056 |
. . . . . . . 8
⊢
∀𝑧 ∈
𝐴 if(𝑧 ∈ 𝑦, 1o, ∅) ∈
2o |
| 22 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) |
| 23 | 22 | fmpt 7105 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 if(𝑧 ∈ 𝑦, 1o, ∅) ∈
2o ↔ (𝑧
∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o) |
| 24 | 21, 23 | mpbi 230 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o |
| 25 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) |
| 26 | 25 | feq1d 6695 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o)) |
| 27 | 24, 26 | mpbiri 258 |
. . . . . 6
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → 𝑥:𝐴⟶2o) |
| 28 | | iftrue 4511 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑦 → if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
| 29 | | noel 4318 |
. . . . . . . . . . . . . 14
⊢ ¬
∅ ∈ ∅ |
| 30 | | iffalse 4514 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑤 ∈ 𝑦 → if(𝑤 ∈ 𝑦, 1o, ∅) =
∅) |
| 31 | 30 | eqeq1d 2738 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑤 ∈ 𝑦 → (if(𝑤 ∈ 𝑦, 1o, ∅) = 1o
↔ ∅ = 1o)) |
| 32 | | 0lt1o 8521 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ 1o |
| 33 | | eleq2 2824 |
. . . . . . . . . . . . . . . 16
⊢ (∅
= 1o → (∅ ∈ ∅ ↔ ∅ ∈
1o)) |
| 34 | 32, 33 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (∅
= 1o → ∅ ∈ ∅) |
| 35 | 31, 34 | biimtrdi 253 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑤 ∈ 𝑦 → (if(𝑤 ∈ 𝑦, 1o, ∅) = 1o
→ ∅ ∈ ∅)) |
| 36 | 29, 35 | mtoi 199 |
. . . . . . . . . . . . 13
⊢ (¬
𝑤 ∈ 𝑦 → ¬ if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
| 37 | 36 | con4i 114 |
. . . . . . . . . . . 12
⊢ (if(𝑤 ∈ 𝑦, 1o, ∅) = 1o
→ 𝑤 ∈ 𝑦) |
| 38 | 28, 37 | impbii 209 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑦 ↔ if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
| 39 | 25 | fveq1d 6883 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤)) |
| 40 | | elequ1 2116 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦)) |
| 41 | 40 | ifbid 4529 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → if(𝑧 ∈ 𝑦, 1o, ∅) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
| 42 | 12, 16 | ifcli 4553 |
. . . . . . . . . . . . . 14
⊢ if(𝑤 ∈ 𝑦, 1o, ∅) ∈
V |
| 43 | 41, 22, 42 | fvmpt 6991 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝐴 → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
| 44 | 39, 43 | sylan9eq 2791 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
| 45 | 44 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ if(𝑤 ∈ 𝑦, 1o, ∅) =
1o)) |
| 46 | 38, 45 | bitr4id 290 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ (𝑥‘𝑤) = 1o)) |
| 47 | | fvex 6894 |
. . . . . . . . . . 11
⊢ (𝑥‘𝑤) ∈ V |
| 48 | 47 | elsn 4621 |
. . . . . . . . . 10
⊢ ((𝑥‘𝑤) ∈ {1o} ↔ (𝑥‘𝑤) = 1o) |
| 49 | 46, 48 | bitr4di 289 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ (𝑥‘𝑤) ∈ {1o})) |
| 50 | 49 | pm5.32da 579 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → ((𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦) ↔ (𝑤 ∈ 𝐴 ∧ (𝑥‘𝑤) ∈ {1o}))) |
| 51 | | ssel 3957 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝐴 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴)) |
| 52 | 51 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴)) |
| 53 | 52 | pm4.71rd 562 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ 𝑦 ↔ (𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦))) |
| 54 | | ffn 6711 |
. . . . . . . . 9
⊢ (𝑥:𝐴⟶2o → 𝑥 Fn 𝐴) |
| 55 | | elpreima 7053 |
. . . . . . . . 9
⊢ (𝑥 Fn 𝐴 → (𝑤 ∈ (◡𝑥 “ {1o}) ↔ (𝑤 ∈ 𝐴 ∧ (𝑥‘𝑤) ∈ {1o}))) |
| 56 | 27, 54, 55 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ (◡𝑥 “ {1o}) ↔ (𝑤 ∈ 𝐴 ∧ (𝑥‘𝑤) ∈ {1o}))) |
| 57 | 50, 53, 56 | 3bitr4d 311 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ 𝑦 ↔ 𝑤 ∈ (◡𝑥 “ {1o}))) |
| 58 | 57 | eqrdv 2734 |
. . . . . 6
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → 𝑦 = (◡𝑥 “ {1o})) |
| 59 | 27, 58 | jca 511 |
. . . . 5
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o}))) |
| 60 | | simpr 484 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑦 = (◡𝑥 “ {1o})) |
| 61 | | cnvimass 6074 |
. . . . . . . 8
⊢ (◡𝑥 “ {1o}) ⊆ dom 𝑥 |
| 62 | | fdm 6720 |
. . . . . . . . 9
⊢ (𝑥:𝐴⟶2o → dom 𝑥 = 𝐴) |
| 63 | 62 | adantr 480 |
. . . . . . . 8
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → dom 𝑥 = 𝐴) |
| 64 | 61, 63 | sseqtrid 4006 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → (◡𝑥 “ {1o}) ⊆ 𝐴) |
| 65 | 60, 64 | eqsstrd 3998 |
. . . . . 6
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑦 ⊆ 𝐴) |
| 66 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → 𝑦 = (◡𝑥 “ {1o})) |
| 67 | 66 | eleq2d 2821 |
. . . . . . . . . . . . 13
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ 𝑤 ∈ (◡𝑥 “ {1o}))) |
| 68 | 54 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑥 Fn 𝐴) |
| 69 | | fnbrfvb 6934 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 Fn 𝐴 ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ 𝑤𝑥1o)) |
| 70 | 68, 69 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ 𝑤𝑥1o)) |
| 71 | | 1on 8497 |
. . . . . . . . . . . . . . 15
⊢
1o ∈ On |
| 72 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ 𝑤 ∈ V |
| 73 | 72 | eliniseg 6086 |
. . . . . . . . . . . . . . 15
⊢
(1o ∈ On → (𝑤 ∈ (◡𝑥 “ {1o}) ↔ 𝑤𝑥1o)) |
| 74 | 71, 73 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (◡𝑥 “ {1o}) ↔ 𝑤𝑥1o) |
| 75 | 70, 74 | bitr4di 289 |
. . . . . . . . . . . . 13
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ 𝑤 ∈ (◡𝑥 “ {1o}))) |
| 76 | 67, 75 | bitr4d 282 |
. . . . . . . . . . . 12
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ (𝑥‘𝑤) = 1o)) |
| 77 | 76 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = 1o) |
| 78 | 28 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 ∈ 𝑦) → if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
| 79 | 77, 78 | eqtr4d 2774 |
. . . . . . . . . 10
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
| 80 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥:𝐴⟶2o ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ 2o) |
| 81 | 80 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ 2o) |
| 82 | | df2o3 8493 |
. . . . . . . . . . . . . . . . 17
⊢
2o = {∅, 1o} |
| 83 | 81, 82 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ {∅,
1o}) |
| 84 | 47 | elpr 4631 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥‘𝑤) ∈ {∅, 1o} ↔
((𝑥‘𝑤) = ∅ ∨ (𝑥‘𝑤) = 1o)) |
| 85 | 83, 84 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = ∅ ∨ (𝑥‘𝑤) = 1o)) |
| 86 | 85 | ord 864 |
. . . . . . . . . . . . . 14
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (¬ (𝑥‘𝑤) = ∅ → (𝑥‘𝑤) = 1o)) |
| 87 | 86, 76 | sylibrd 259 |
. . . . . . . . . . . . 13
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (¬ (𝑥‘𝑤) = ∅ → 𝑤 ∈ 𝑦)) |
| 88 | 87 | con1d 145 |
. . . . . . . . . . . 12
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤 ∈ 𝑦 → (𝑥‘𝑤) = ∅)) |
| 89 | 88 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = ∅) |
| 90 | 30 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 ∈ 𝑦) → if(𝑤 ∈ 𝑦, 1o, ∅) =
∅) |
| 91 | 89, 90 | eqtr4d 2774 |
. . . . . . . . . 10
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
| 92 | 79, 91 | pm2.61dan 812 |
. . . . . . . . 9
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
| 93 | 43 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
| 94 | 92, 93 | eqtr4d 2774 |
. . . . . . . 8
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤)) |
| 95 | 94 | ralrimiva 3133 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) →
∀𝑤 ∈ 𝐴 (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤)) |
| 96 | | ffn 6711 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) Fn 𝐴) |
| 97 | 24, 96 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) Fn 𝐴 |
| 98 | | eqfnfv 7026 |
. . . . . . . 8
⊢ ((𝑥 Fn 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) Fn 𝐴) → (𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ↔
∀𝑤 ∈ 𝐴 (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤))) |
| 99 | 68, 97, 98 | sylancl 586 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → (𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ↔
∀𝑤 ∈ 𝐴 (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤))) |
| 100 | 95, 99 | mpbird 257 |
. . . . . 6
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) |
| 101 | 65, 100 | jca 511 |
. . . . 5
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → (𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)))) |
| 102 | 59, 101 | impbii 209 |
. . . 4
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ↔ (𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o}))) |
| 103 | 11, 102 | bitr4di 289 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ∧ 𝑦 = (◡𝑥 “ {1o})) ↔ (𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o,
∅))))) |
| 104 | | velpw 4585 |
. . . 4
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
| 105 | 104 | anbi1i 624 |
. . 3
⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ↔ (𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)))) |
| 106 | 103, 105 | bitr4di 289 |
. 2
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ∧ 𝑦 = (◡𝑥 “ {1o})) ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o,
∅))))) |
| 107 | 1, 5, 7, 106 | f1ocnvd 7663 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴 ∧ ◡𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o,
∅))))) |