Step | Hyp | Ref
| Expression |
1 | | pw2f1o2.f |
. 2
⊢ 𝐹 = (𝑥 ∈ (2o ↑m
𝐴) ↦ (◡𝑥 “ {1o})) |
2 | | vex 3436 |
. . . 4
⊢ 𝑥 ∈ V |
3 | 2 | cnvex 7772 |
. . 3
⊢ ◡𝑥 ∈ V |
4 | | imaexg 7762 |
. . 3
⊢ (◡𝑥 ∈ V → (◡𝑥 “ {1o}) ∈
V) |
5 | 3, 4 | mp1i 13 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (2o ↑m
𝐴)) → (◡𝑥 “ {1o}) ∈
V) |
6 | | mptexg 7097 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ∈
V) |
7 | 6 | adantr 481 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ∈
V) |
8 | | 2on 8311 |
. . . . . 6
⊢
2o ∈ On |
9 | | elmapg 8628 |
. . . . . 6
⊢
((2o ∈ On ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (2o ↑m
𝐴) ↔ 𝑥:𝐴⟶2o)) |
10 | 8, 9 | mpan 687 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2o ↑m
𝐴) ↔ 𝑥:𝐴⟶2o)) |
11 | 10 | anbi1d 630 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ∧ 𝑦 = (◡𝑥 “ {1o})) ↔ (𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})))) |
12 | | 1oex 8307 |
. . . . . . . . . . . 12
⊢
1o ∈ V |
13 | 12 | sucid 6345 |
. . . . . . . . . . 11
⊢
1o ∈ suc 1o |
14 | | df-2o 8298 |
. . . . . . . . . . 11
⊢
2o = suc 1o |
15 | 13, 14 | eleqtrri 2838 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
16 | | 0ex 5231 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
17 | 16 | prid1 4698 |
. . . . . . . . . . 11
⊢ ∅
∈ {∅, {∅}} |
18 | | df2o2 8306 |
. . . . . . . . . . 11
⊢
2o = {∅, {∅}} |
19 | 17, 18 | eleqtrri 2838 |
. . . . . . . . . 10
⊢ ∅
∈ 2o |
20 | 15, 19 | ifcli 4506 |
. . . . . . . . 9
⊢ if(𝑧 ∈ 𝑦, 1o, ∅) ∈
2o |
21 | 20 | rgenw 3076 |
. . . . . . . 8
⊢
∀𝑧 ∈
𝐴 if(𝑧 ∈ 𝑦, 1o, ∅) ∈
2o |
22 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) |
23 | 22 | fmpt 6984 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 if(𝑧 ∈ 𝑦, 1o, ∅) ∈
2o ↔ (𝑧
∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o) |
24 | 21, 23 | mpbi 229 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o |
25 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) |
26 | 25 | feq1d 6585 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o)) |
27 | 24, 26 | mpbiri 257 |
. . . . . 6
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → 𝑥:𝐴⟶2o) |
28 | | iftrue 4465 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑦 → if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
29 | | noel 4264 |
. . . . . . . . . . . . . 14
⊢ ¬
∅ ∈ ∅ |
30 | | iffalse 4468 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑤 ∈ 𝑦 → if(𝑤 ∈ 𝑦, 1o, ∅) =
∅) |
31 | 30 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑤 ∈ 𝑦 → (if(𝑤 ∈ 𝑦, 1o, ∅) = 1o
↔ ∅ = 1o)) |
32 | | 0lt1o 8334 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ 1o |
33 | | eleq2 2827 |
. . . . . . . . . . . . . . . 16
⊢ (∅
= 1o → (∅ ∈ ∅ ↔ ∅ ∈
1o)) |
34 | 32, 33 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ (∅
= 1o → ∅ ∈ ∅) |
35 | 31, 34 | syl6bi 252 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑤 ∈ 𝑦 → (if(𝑤 ∈ 𝑦, 1o, ∅) = 1o
→ ∅ ∈ ∅)) |
36 | 29, 35 | mtoi 198 |
. . . . . . . . . . . . 13
⊢ (¬
𝑤 ∈ 𝑦 → ¬ if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
37 | 36 | con4i 114 |
. . . . . . . . . . . 12
⊢ (if(𝑤 ∈ 𝑦, 1o, ∅) = 1o
→ 𝑤 ∈ 𝑦) |
38 | 28, 37 | impbii 208 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑦 ↔ if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
39 | 25 | fveq1d 6776 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤)) |
40 | | elequ1 2113 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦)) |
41 | 40 | ifbid 4482 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → if(𝑧 ∈ 𝑦, 1o, ∅) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
42 | 12, 16 | ifcli 4506 |
. . . . . . . . . . . . . 14
⊢ if(𝑤 ∈ 𝑦, 1o, ∅) ∈
V |
43 | 41, 22, 42 | fvmpt 6875 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝐴 → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
44 | 39, 43 | sylan9eq 2798 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
45 | 44 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ if(𝑤 ∈ 𝑦, 1o, ∅) =
1o)) |
46 | 38, 45 | bitr4id 290 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ (𝑥‘𝑤) = 1o)) |
47 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝑥‘𝑤) ∈ V |
48 | 47 | elsn 4576 |
. . . . . . . . . 10
⊢ ((𝑥‘𝑤) ∈ {1o} ↔ (𝑥‘𝑤) = 1o) |
49 | 46, 48 | bitr4di 289 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ (𝑥‘𝑤) ∈ {1o})) |
50 | 49 | pm5.32da 579 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → ((𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦) ↔ (𝑤 ∈ 𝐴 ∧ (𝑥‘𝑤) ∈ {1o}))) |
51 | | ssel 3914 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝐴 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴)) |
52 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴)) |
53 | 52 | pm4.71rd 563 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ 𝑦 ↔ (𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦))) |
54 | | ffn 6600 |
. . . . . . . . 9
⊢ (𝑥:𝐴⟶2o → 𝑥 Fn 𝐴) |
55 | | elpreima 6935 |
. . . . . . . . 9
⊢ (𝑥 Fn 𝐴 → (𝑤 ∈ (◡𝑥 “ {1o}) ↔ (𝑤 ∈ 𝐴 ∧ (𝑥‘𝑤) ∈ {1o}))) |
56 | 27, 54, 55 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ (◡𝑥 “ {1o}) ↔ (𝑤 ∈ 𝐴 ∧ (𝑥‘𝑤) ∈ {1o}))) |
57 | 50, 53, 56 | 3bitr4d 311 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑤 ∈ 𝑦 ↔ 𝑤 ∈ (◡𝑥 “ {1o}))) |
58 | 57 | eqrdv 2736 |
. . . . . 6
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → 𝑦 = (◡𝑥 “ {1o})) |
59 | 27, 58 | jca 512 |
. . . . 5
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) → (𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o}))) |
60 | | simpr 485 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑦 = (◡𝑥 “ {1o})) |
61 | | cnvimass 5989 |
. . . . . . . 8
⊢ (◡𝑥 “ {1o}) ⊆ dom 𝑥 |
62 | | fdm 6609 |
. . . . . . . . 9
⊢ (𝑥:𝐴⟶2o → dom 𝑥 = 𝐴) |
63 | 62 | adantr 481 |
. . . . . . . 8
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → dom 𝑥 = 𝐴) |
64 | 61, 63 | sseqtrid 3973 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → (◡𝑥 “ {1o}) ⊆ 𝐴) |
65 | 60, 64 | eqsstrd 3959 |
. . . . . 6
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑦 ⊆ 𝐴) |
66 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → 𝑦 = (◡𝑥 “ {1o})) |
67 | 66 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ 𝑤 ∈ (◡𝑥 “ {1o}))) |
68 | 54 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑥 Fn 𝐴) |
69 | | fnbrfvb 6822 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 Fn 𝐴 ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ 𝑤𝑥1o)) |
70 | 68, 69 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ 𝑤𝑥1o)) |
71 | | 1on 8309 |
. . . . . . . . . . . . . . 15
⊢
1o ∈ On |
72 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑤 ∈ V |
73 | 72 | eliniseg 6002 |
. . . . . . . . . . . . . . 15
⊢
(1o ∈ On → (𝑤 ∈ (◡𝑥 “ {1o}) ↔ 𝑤𝑥1o)) |
74 | 71, 73 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ (◡𝑥 “ {1o}) ↔ 𝑤𝑥1o) |
75 | 70, 74 | bitr4di 289 |
. . . . . . . . . . . . 13
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = 1o ↔ 𝑤 ∈ (◡𝑥 “ {1o}))) |
76 | 67, 75 | bitr4d 281 |
. . . . . . . . . . . 12
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑤 ∈ 𝑦 ↔ (𝑥‘𝑤) = 1o)) |
77 | 76 | biimpa 477 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = 1o) |
78 | 28 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 ∈ 𝑦) → if(𝑤 ∈ 𝑦, 1o, ∅) =
1o) |
79 | 77, 78 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
80 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥:𝐴⟶2o ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ 2o) |
81 | 80 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ 2o) |
82 | | df2o3 8305 |
. . . . . . . . . . . . . . . . 17
⊢
2o = {∅, 1o} |
83 | 81, 82 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) ∈ {∅,
1o}) |
84 | 47 | elpr 4584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥‘𝑤) ∈ {∅, 1o} ↔
((𝑥‘𝑤) = ∅ ∨ (𝑥‘𝑤) = 1o)) |
85 | 83, 84 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑥‘𝑤) = ∅ ∨ (𝑥‘𝑤) = 1o)) |
86 | 85 | ord 861 |
. . . . . . . . . . . . . 14
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (¬ (𝑥‘𝑤) = ∅ → (𝑥‘𝑤) = 1o)) |
87 | 86, 76 | sylibrd 258 |
. . . . . . . . . . . . 13
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (¬ (𝑥‘𝑤) = ∅ → 𝑤 ∈ 𝑦)) |
88 | 87 | con1d 145 |
. . . . . . . . . . . 12
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤 ∈ 𝑦 → (𝑥‘𝑤) = ∅)) |
89 | 88 | imp 407 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = ∅) |
90 | 30 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 ∈ 𝑦) → if(𝑤 ∈ 𝑦, 1o, ∅) =
∅) |
91 | 89, 90 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) ∧ ¬ 𝑤 ∈ 𝑦) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
92 | 79, 91 | pm2.61dan 810 |
. . . . . . . . 9
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
93 | 43 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤) = if(𝑤 ∈ 𝑦, 1o, ∅)) |
94 | 92, 93 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) ∧ 𝑤 ∈ 𝐴) → (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤)) |
95 | 94 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) →
∀𝑤 ∈ 𝐴 (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤)) |
96 | | ffn 6600 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)):𝐴⟶2o → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) Fn 𝐴) |
97 | 24, 96 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) Fn 𝐴 |
98 | | eqfnfv 6909 |
. . . . . . . 8
⊢ ((𝑥 Fn 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) Fn 𝐴) → (𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ↔
∀𝑤 ∈ 𝐴 (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤))) |
99 | 68, 97, 98 | sylancl 586 |
. . . . . . 7
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → (𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)) ↔
∀𝑤 ∈ 𝐴 (𝑥‘𝑤) = ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))‘𝑤))) |
100 | 95, 99 | mpbird 256 |
. . . . . 6
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) |
101 | 65, 100 | jca 512 |
. . . . 5
⊢ ((𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o})) → (𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)))) |
102 | 59, 101 | impbii 208 |
. . . 4
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ↔ (𝑥:𝐴⟶2o ∧ 𝑦 = (◡𝑥 “ {1o}))) |
103 | 11, 102 | bitr4di 289 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ∧ 𝑦 = (◡𝑥 “ {1o})) ↔ (𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o,
∅))))) |
104 | | velpw 4538 |
. . . 4
⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) |
105 | 104 | anbi1i 624 |
. . 3
⊢ ((𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))) ↔ (𝑦 ⊆ 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅)))) |
106 | 103, 105 | bitr4di 289 |
. 2
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2o ↑m
𝐴) ∧ 𝑦 = (◡𝑥 “ {1o})) ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o,
∅))))) |
107 | 1, 5, 7, 106 | f1ocnvd 7520 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴 ∧ ◡𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o,
∅))))) |