Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version |
Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8274 | . . 3 ⊢ 1o ∈ On | |
2 | 2on 8275 | . . 3 ⊢ 2o ∈ On | |
3 | prssi 4751 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
4 | 1, 2, 3 | mp2an 688 | . 2 ⊢ {1o, 2o} ⊆ On |
5 | df1o2 8279 | . . . . 5 ⊢ 1o = {∅} | |
6 | pw0 4742 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
7 | 5, 6 | eqtr4i 2769 | . . . 4 ⊢ 1o = 𝒫 ∅ |
8 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
9 | dishaus 22441 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
11 | 7, 10 | eqeltri 2835 | . . 3 ⊢ 1o ∈ Haus |
12 | df2o2 8283 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
13 | pwpw0 4743 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
14 | 12, 13 | eqtr4i 2769 | . . . 4 ⊢ 2o = 𝒫 {∅} |
15 | p0ex 5302 | . . . . 5 ⊢ {∅} ∈ V | |
16 | dishaus 22441 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
18 | 14, 17 | eqeltri 2835 | . . 3 ⊢ 2o ∈ Haus |
19 | prssi 4751 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
20 | 11, 18, 19 | mp2an 688 | . 2 ⊢ {1o, 2o} ⊆ Haus |
21 | 4, 20 | ssini 4162 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 {cpr 4560 Oncon0 6251 1oc1o 8260 2oc2o 8261 Hauscha 22367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 df-1o 8267 df-2o 8268 df-top 21951 df-haus 22374 |
This theorem is referenced by: onint1 34565 oninhaus 34566 |
Copyright terms: Public domain | W3C validator |