![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version |
Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8534 | . . 3 ⊢ 1o ∈ On | |
2 | 2on 8536 | . . 3 ⊢ 2o ∈ On | |
3 | prssi 4846 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
4 | 1, 2, 3 | mp2an 691 | . 2 ⊢ {1o, 2o} ⊆ On |
5 | df1o2 8529 | . . . . 5 ⊢ 1o = {∅} | |
6 | pw0 4837 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
7 | 5, 6 | eqtr4i 2771 | . . . 4 ⊢ 1o = 𝒫 ∅ |
8 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
9 | dishaus 23411 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
11 | 7, 10 | eqeltri 2840 | . . 3 ⊢ 1o ∈ Haus |
12 | df2o2 8531 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
13 | pwpw0 4838 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
14 | 12, 13 | eqtr4i 2771 | . . . 4 ⊢ 2o = 𝒫 {∅} |
15 | p0ex 5402 | . . . . 5 ⊢ {∅} ∈ V | |
16 | dishaus 23411 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
18 | 14, 17 | eqeltri 2840 | . . 3 ⊢ 2o ∈ Haus |
19 | prssi 4846 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
20 | 11, 18, 19 | mp2an 691 | . 2 ⊢ {1o, 2o} ⊆ Haus |
21 | 4, 20 | ssini 4261 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 {cpr 4650 Oncon0 6395 1oc1o 8515 2oc2o 8516 Hauscha 23337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 df-1o 8522 df-2o 8523 df-top 22921 df-haus 23344 |
This theorem is referenced by: onint1 36415 oninhaus 36416 |
Copyright terms: Public domain | W3C validator |