| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version | ||
| Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
| Ref | Expression |
|---|---|
| ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8497 | . . 3 ⊢ 1o ∈ On | |
| 2 | 2on 8499 | . . 3 ⊢ 2o ∈ On | |
| 3 | prssi 4802 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ {1o, 2o} ⊆ On |
| 5 | df1o2 8492 | . . . . 5 ⊢ 1o = {∅} | |
| 6 | pw0 4793 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
| 7 | 5, 6 | eqtr4i 2762 | . . . 4 ⊢ 1o = 𝒫 ∅ |
| 8 | 0ex 5282 | . . . . 5 ⊢ ∅ ∈ V | |
| 9 | dishaus 23325 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
| 11 | 7, 10 | eqeltri 2831 | . . 3 ⊢ 1o ∈ Haus |
| 12 | df2o2 8494 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
| 13 | pwpw0 4794 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
| 14 | 12, 13 | eqtr4i 2762 | . . . 4 ⊢ 2o = 𝒫 {∅} |
| 15 | p0ex 5359 | . . . . 5 ⊢ {∅} ∈ V | |
| 16 | dishaus 23325 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
| 18 | 14, 17 | eqeltri 2831 | . . 3 ⊢ 2o ∈ Haus |
| 19 | prssi 4802 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
| 20 | 11, 18, 19 | mp2an 692 | . 2 ⊢ {1o, 2o} ⊆ Haus |
| 21 | 4, 20 | ssini 4220 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 {cpr 4608 Oncon0 6357 1oc1o 8478 2oc2o 8479 Hauscha 23251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 df-1o 8485 df-2o 8486 df-top 22837 df-haus 23258 |
| This theorem is referenced by: onint1 36472 oninhaus 36473 |
| Copyright terms: Public domain | W3C validator |