![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version |
Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7910 | . . 3 ⊢ 1o ∈ On | |
2 | 2on 7912 | . . 3 ⊢ 2o ∈ On | |
3 | prssi 4624 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
4 | 1, 2, 3 | mp2an 680 | . 2 ⊢ {1o, 2o} ⊆ On |
5 | df1o2 7916 | . . . . 5 ⊢ 1o = {∅} | |
6 | pw0 4615 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
7 | 5, 6 | eqtr4i 2798 | . . . 4 ⊢ 1o = 𝒫 ∅ |
8 | 0ex 5064 | . . . . 5 ⊢ ∅ ∈ V | |
9 | dishaus 21709 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
11 | 7, 10 | eqeltri 2855 | . . 3 ⊢ 1o ∈ Haus |
12 | df2o2 7918 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
13 | pwpw0 4616 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
14 | 12, 13 | eqtr4i 2798 | . . . 4 ⊢ 2o = 𝒫 {∅} |
15 | p0ex 5133 | . . . . 5 ⊢ {∅} ∈ V | |
16 | dishaus 21709 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
18 | 14, 17 | eqeltri 2855 | . . 3 ⊢ 2o ∈ Haus |
19 | prssi 4624 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
20 | 11, 18, 19 | mp2an 680 | . 2 ⊢ {1o, 2o} ⊆ Haus |
21 | 4, 20 | ssini 4089 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2051 Vcvv 3408 ∩ cin 3821 ⊆ wss 3822 ∅c0 4172 𝒫 cpw 4416 {csn 4435 {cpr 4437 Oncon0 6026 1oc1o 7896 2oc2o 7897 Hauscha 21635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-tr 5027 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-ord 6029 df-on 6030 df-suc 6032 df-1o 7903 df-2o 7904 df-top 21221 df-haus 21642 |
This theorem is referenced by: onint1 33354 oninhaus 33355 |
Copyright terms: Public domain | W3C validator |