![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version |
Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8517 | . . 3 ⊢ 1o ∈ On | |
2 | 2on 8519 | . . 3 ⊢ 2o ∈ On | |
3 | prssi 4826 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ {1o, 2o} ⊆ On |
5 | df1o2 8512 | . . . . 5 ⊢ 1o = {∅} | |
6 | pw0 4817 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
7 | 5, 6 | eqtr4i 2766 | . . . 4 ⊢ 1o = 𝒫 ∅ |
8 | 0ex 5313 | . . . . 5 ⊢ ∅ ∈ V | |
9 | dishaus 23406 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
11 | 7, 10 | eqeltri 2835 | . . 3 ⊢ 1o ∈ Haus |
12 | df2o2 8514 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
13 | pwpw0 4818 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
14 | 12, 13 | eqtr4i 2766 | . . . 4 ⊢ 2o = 𝒫 {∅} |
15 | p0ex 5390 | . . . . 5 ⊢ {∅} ∈ V | |
16 | dishaus 23406 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
18 | 14, 17 | eqeltri 2835 | . . 3 ⊢ 2o ∈ Haus |
19 | prssi 4826 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
20 | 11, 18, 19 | mp2an 692 | . 2 ⊢ {1o, 2o} ⊆ Haus |
21 | 4, 20 | ssini 4248 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 {cpr 4633 Oncon0 6386 1oc1o 8498 2oc2o 8499 Hauscha 23332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 df-1o 8505 df-2o 8506 df-top 22916 df-haus 23339 |
This theorem is referenced by: onint1 36432 oninhaus 36433 |
Copyright terms: Public domain | W3C validator |