![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version |
Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8371 | . . 3 ⊢ 1o ∈ On | |
2 | 2on 8373 | . . 3 ⊢ 2o ∈ On | |
3 | prssi 4767 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ {1o, 2o} ⊆ On |
5 | df1o2 8366 | . . . . 5 ⊢ 1o = {∅} | |
6 | pw0 4758 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
7 | 5, 6 | eqtr4i 2767 | . . . 4 ⊢ 1o = 𝒫 ∅ |
8 | 0ex 5248 | . . . . 5 ⊢ ∅ ∈ V | |
9 | dishaus 22631 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
11 | 7, 10 | eqeltri 2833 | . . 3 ⊢ 1o ∈ Haus |
12 | df2o2 8368 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
13 | pwpw0 4759 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
14 | 12, 13 | eqtr4i 2767 | . . . 4 ⊢ 2o = 𝒫 {∅} |
15 | p0ex 5324 | . . . . 5 ⊢ {∅} ∈ V | |
16 | dishaus 22631 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
18 | 14, 17 | eqeltri 2833 | . . 3 ⊢ 2o ∈ Haus |
19 | prssi 4767 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
20 | 11, 18, 19 | mp2an 689 | . 2 ⊢ {1o, 2o} ⊆ Haus |
21 | 4, 20 | ssini 4177 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 ∩ cin 3896 ⊆ wss 3897 ∅c0 4268 𝒫 cpw 4546 {csn 4572 {cpr 4574 Oncon0 6296 1oc1o 8352 2oc2o 8353 Hauscha 22557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-ord 6299 df-on 6300 df-suc 6302 df-1o 8359 df-2o 8360 df-top 22141 df-haus 22564 |
This theorem is referenced by: onint1 34729 oninhaus 34730 |
Copyright terms: Public domain | W3C validator |