Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version |
Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8309 | . . 3 ⊢ 1o ∈ On | |
2 | 2on 8311 | . . 3 ⊢ 2o ∈ On | |
3 | prssi 4754 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ {1o, 2o} ⊆ On |
5 | df1o2 8304 | . . . . 5 ⊢ 1o = {∅} | |
6 | pw0 4745 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
7 | 5, 6 | eqtr4i 2769 | . . . 4 ⊢ 1o = 𝒫 ∅ |
8 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
9 | dishaus 22533 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
11 | 7, 10 | eqeltri 2835 | . . 3 ⊢ 1o ∈ Haus |
12 | df2o2 8306 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
13 | pwpw0 4746 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
14 | 12, 13 | eqtr4i 2769 | . . . 4 ⊢ 2o = 𝒫 {∅} |
15 | p0ex 5307 | . . . . 5 ⊢ {∅} ∈ V | |
16 | dishaus 22533 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
18 | 14, 17 | eqeltri 2835 | . . 3 ⊢ 2o ∈ Haus |
19 | prssi 4754 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
20 | 11, 18, 19 | mp2an 689 | . 2 ⊢ {1o, 2o} ⊆ Haus |
21 | 4, 20 | ssini 4165 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 {cpr 4563 Oncon0 6266 1oc1o 8290 2oc2o 8291 Hauscha 22459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 df-1o 8297 df-2o 8298 df-top 22043 df-haus 22466 |
This theorem is referenced by: onint1 34638 oninhaus 34639 |
Copyright terms: Public domain | W3C validator |