![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssoninhaus | Structured version Visualization version GIF version |
Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
ssoninhaus | ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8482 | . . 3 ⊢ 1o ∈ On | |
2 | 2on 8484 | . . 3 ⊢ 2o ∈ On | |
3 | prssi 4824 | . . 3 ⊢ ((1o ∈ On ∧ 2o ∈ On) → {1o, 2o} ⊆ On) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ {1o, 2o} ⊆ On |
5 | df1o2 8477 | . . . . 5 ⊢ 1o = {∅} | |
6 | pw0 4815 | . . . . 5 ⊢ 𝒫 ∅ = {∅} | |
7 | 5, 6 | eqtr4i 2762 | . . . 4 ⊢ 1o = 𝒫 ∅ |
8 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
9 | dishaus 23107 | . . . . 5 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ Haus) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 𝒫 ∅ ∈ Haus |
11 | 7, 10 | eqeltri 2828 | . . 3 ⊢ 1o ∈ Haus |
12 | df2o2 8479 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
13 | pwpw0 4816 | . . . . 5 ⊢ 𝒫 {∅} = {∅, {∅}} | |
14 | 12, 13 | eqtr4i 2762 | . . . 4 ⊢ 2o = 𝒫 {∅} |
15 | p0ex 5382 | . . . . 5 ⊢ {∅} ∈ V | |
16 | dishaus 23107 | . . . . 5 ⊢ ({∅} ∈ V → 𝒫 {∅} ∈ Haus) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝒫 {∅} ∈ Haus |
18 | 14, 17 | eqeltri 2828 | . . 3 ⊢ 2o ∈ Haus |
19 | prssi 4824 | . . 3 ⊢ ((1o ∈ Haus ∧ 2o ∈ Haus) → {1o, 2o} ⊆ Haus) | |
20 | 11, 18, 19 | mp2an 689 | . 2 ⊢ {1o, 2o} ⊆ Haus |
21 | 4, 20 | ssini 4231 | 1 ⊢ {1o, 2o} ⊆ (On ∩ Haus) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 {cpr 4630 Oncon0 6364 1oc1o 8463 2oc2o 8464 Hauscha 23033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-suc 6370 df-1o 8470 df-2o 8471 df-top 22617 df-haus 23040 |
This theorem is referenced by: onint1 35638 oninhaus 35639 |
Copyright terms: Public domain | W3C validator |