MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   GIF version

Theorem canthp1lem1 9727
Description: Lemma for canthp1 9729. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)

Proof of Theorem canthp1lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1sdom2 8366 . . 3 1𝑜 ≺ 2𝑜
2 cdaxpdom 9264 . . 3 ((1𝑜𝐴 ∧ 1𝑜 ≺ 2𝑜) → (𝐴 +𝑐 2𝑜) ≼ (𝐴 × 2𝑜))
31, 2mpan2 682 . 2 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ (𝐴 × 2𝑜))
4 sdom0 8299 . . . . . 6 ¬ 1𝑜 ≺ ∅
5 breq2 4813 . . . . . 6 (𝐴 = ∅ → (1𝑜𝐴 ↔ 1𝑜 ≺ ∅))
64, 5mtbiri 318 . . . . 5 (𝐴 = ∅ → ¬ 1𝑜𝐴)
76con2i 136 . . . 4 (1𝑜𝐴 → ¬ 𝐴 = ∅)
8 neq0 4094 . . . 4 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
97, 8sylib 209 . . 3 (1𝑜𝐴 → ∃𝑥 𝑥𝐴)
10 relsdom 8167 . . . . . . . . . 10 Rel ≺
1110brrelex2i 5329 . . . . . . . . 9 (1𝑜𝐴𝐴 ∈ V)
1211adantr 472 . . . . . . . 8 ((1𝑜𝐴𝑥𝐴) → 𝐴 ∈ V)
13 enrefg 8192 . . . . . . . 8 (𝐴 ∈ V → 𝐴𝐴)
1412, 13syl 17 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → 𝐴𝐴)
15 df2o2 7779 . . . . . . . . 9 2𝑜 = {∅, {∅}}
16 pwpw0 4498 . . . . . . . . 9 𝒫 {∅} = {∅, {∅}}
1715, 16eqtr4i 2790 . . . . . . . 8 2𝑜 = 𝒫 {∅}
18 0ex 4950 . . . . . . . . . 10 ∅ ∈ V
19 vex 3353 . . . . . . . . . 10 𝑥 ∈ V
20 en2sn 8244 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
2118, 19, 20mp2an 683 . . . . . . . . 9 {∅} ≈ {𝑥}
22 pwen 8340 . . . . . . . . 9 ({∅} ≈ {𝑥} → 𝒫 {∅} ≈ 𝒫 {𝑥})
2321, 22ax-mp 5 . . . . . . . 8 𝒫 {∅} ≈ 𝒫 {𝑥}
2417, 23eqbrtri 4830 . . . . . . 7 2𝑜 ≈ 𝒫 {𝑥}
25 xpen 8330 . . . . . . 7 ((𝐴𝐴 ∧ 2𝑜 ≈ 𝒫 {𝑥}) → (𝐴 × 2𝑜) ≈ (𝐴 × 𝒫 {𝑥}))
2614, 24, 25sylancl 580 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≈ (𝐴 × 𝒫 {𝑥}))
27 snex 5064 . . . . . . . 8 {𝑥} ∈ V
2827pwex 5016 . . . . . . 7 𝒫 {𝑥} ∈ V
29 uncom 3919 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥}))
30 simpr 477 . . . . . . . . . . 11 ((1𝑜𝐴𝑥𝐴) → 𝑥𝐴)
3130snssd 4494 . . . . . . . . . 10 ((1𝑜𝐴𝑥𝐴) → {𝑥} ⊆ 𝐴)
32 undif 4209 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3331, 32sylib 209 . . . . . . . . 9 ((1𝑜𝐴𝑥𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3429, 33syl5eq 2811 . . . . . . . 8 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
35 difexg 4969 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∖ {𝑥}) ∈ V)
3612, 35syl 17 . . . . . . . . 9 ((1𝑜𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ V)
37 canth2g 8321 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}))
38 domunsn 8317 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3936, 37, 383syl 18 . . . . . . . 8 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
4034, 39eqbrtrrd 4833 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥}))
41 xpdom1g 8264 . . . . . . 7 ((𝒫 {𝑥} ∈ V ∧ 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4228, 40, 41sylancr 581 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
43 endomtr 8218 . . . . . 6 (((𝐴 × 2𝑜) ≈ (𝐴 × 𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2𝑜) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4426, 42, 43syl2anc 579 . . . . 5 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
45 pwcdaen 9260 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4636, 27, 45sylancl 580 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4746ensymd 8211 . . . . 5 ((1𝑜𝐴𝑥𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}))
48 domentr 8219 . . . . 5 (((𝐴 × 2𝑜) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ∧ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥})) → (𝐴 × 2𝑜) ≼ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}))
4944, 47, 48syl2anc 579 . . . 4 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≼ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}))
5027a1i 11 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → {𝑥} ∈ V)
51 incom 3967 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐴 ∖ {𝑥}))
52 disjdif 4200 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
5351, 52eqtri 2787 . . . . . . . 8 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅
5453a1i 11 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
55 cdaun 9247 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5636, 50, 54, 55syl3anc 1490 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5756, 34breqtrd 4835 . . . . 5 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝐴)
58 pwen 8340 . . . . 5 (((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴)
5957, 58syl 17 . . . 4 ((1𝑜𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴)
60 domentr 8219 . . . 4 (((𝐴 × 2𝑜) ≼ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ∧ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴) → (𝐴 × 2𝑜) ≼ 𝒫 𝐴)
6149, 59, 60syl2anc 579 . . 3 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≼ 𝒫 𝐴)
629, 61exlimddv 2030 . 2 (1𝑜𝐴 → (𝐴 × 2𝑜) ≼ 𝒫 𝐴)
63 domtr 8213 . 2 (((𝐴 +𝑐 2𝑜) ≼ (𝐴 × 2𝑜) ∧ (𝐴 × 2𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
643, 62, 63syl2anc 579 1 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wex 1874  wcel 2155  Vcvv 3350  cdif 3729  cun 3730  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  {csn 4334  {cpr 4336   class class class wbr 4809   × cxp 5275  (class class class)co 6842  1𝑜c1o 7757  2𝑜c2o 7758  cen 8157  cdom 8158  csdm 8159   +𝑐 ccda 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-1o 7764  df-2o 7765  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-cda 9243
This theorem is referenced by:  canthp1lem2  9728  canthp1  9729
  Copyright terms: Public domain W3C validator