MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   GIF version

Theorem canthp1lem1 10666
Description: Lemma for canthp1 10668. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)

Proof of Theorem canthp1lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1sdom2 9248 . . 3 1o ≺ 2o
2 djuxpdom 10200 . . 3 ((1o𝐴 ∧ 1o ≺ 2o) → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
31, 2mpan2 691 . 2 (1o𝐴 → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
4 sdom0 9122 . . . . . 6 ¬ 1o ≺ ∅
5 breq2 5123 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≺ ∅))
64, 5mtbiri 327 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
76con2i 139 . . . 4 (1o𝐴 → ¬ 𝐴 = ∅)
8 neq0 4327 . . . 4 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
97, 8sylib 218 . . 3 (1o𝐴 → ∃𝑥 𝑥𝐴)
10 relsdom 8966 . . . . . . . . . 10 Rel ≺
1110brrelex2i 5711 . . . . . . . . 9 (1o𝐴𝐴 ∈ V)
1211adantr 480 . . . . . . . 8 ((1o𝐴𝑥𝐴) → 𝐴 ∈ V)
13 enrefg 8998 . . . . . . . 8 (𝐴 ∈ V → 𝐴𝐴)
1412, 13syl 17 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴𝐴)
15 df2o2 8489 . . . . . . . . 9 2o = {∅, {∅}}
16 pwpw0 4789 . . . . . . . . 9 𝒫 {∅} = {∅, {∅}}
1715, 16eqtr4i 2761 . . . . . . . 8 2o = 𝒫 {∅}
18 0ex 5277 . . . . . . . . . 10 ∅ ∈ V
19 vex 3463 . . . . . . . . . 10 𝑥 ∈ V
20 en2sn 9055 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
2118, 19, 20mp2an 692 . . . . . . . . 9 {∅} ≈ {𝑥}
22 pwen 9164 . . . . . . . . 9 ({∅} ≈ {𝑥} → 𝒫 {∅} ≈ 𝒫 {𝑥})
2321, 22ax-mp 5 . . . . . . . 8 𝒫 {∅} ≈ 𝒫 {𝑥}
2417, 23eqbrtri 5140 . . . . . . 7 2o ≈ 𝒫 {𝑥}
25 xpen 9154 . . . . . . 7 ((𝐴𝐴 ∧ 2o ≈ 𝒫 {𝑥}) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
2614, 24, 25sylancl 586 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
27 vsnex 5404 . . . . . . . 8 {𝑥} ∈ V
2827pwex 5350 . . . . . . 7 𝒫 {𝑥} ∈ V
29 uncom 4133 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥}))
30 simpr 484 . . . . . . . . . . 11 ((1o𝐴𝑥𝐴) → 𝑥𝐴)
3130snssd 4785 . . . . . . . . . 10 ((1o𝐴𝑥𝐴) → {𝑥} ⊆ 𝐴)
32 undif 4457 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3331, 32sylib 218 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3429, 33eqtrid 2782 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
3512difexd 5301 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ V)
36 canth2g 9145 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}))
37 domunsn 9141 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3835, 36, 373syl 18 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3934, 38eqbrtrrd 5143 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥}))
40 xpdom1g 9083 . . . . . . 7 ((𝒫 {𝑥} ∈ V ∧ 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4128, 39, 40sylancr 587 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
42 endomtr 9026 . . . . . 6 (((𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4326, 41, 42syl2anc 584 . . . . 5 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
44 pwdjuen 10196 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4535, 27, 44sylancl 586 . . . . . 6 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4645ensymd 9019 . . . . 5 ((1o𝐴𝑥𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
47 domentr 9027 . . . . 5 (((𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ∧ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥})) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4843, 46, 47syl2anc 584 . . . 4 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4927a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → {𝑥} ∈ V)
50 disjdifr 4448 . . . . . . . 8 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅
5150a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
52 endjudisj 10183 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5335, 49, 51, 52syl3anc 1373 . . . . . 6 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5453, 34breqtrd 5145 . . . . 5 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴)
55 pwen 9164 . . . . 5 (((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
5654, 55syl 17 . . . 4 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
57 domentr 9027 . . . 4 (((𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ∧ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
5848, 56, 57syl2anc 584 . . 3 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
599, 58exlimddv 1935 . 2 (1o𝐴 → (𝐴 × 2o) ≼ 𝒫 𝐴)
60 domtr 9021 . 2 (((𝐴 ⊔ 2o) ≼ (𝐴 × 2o) ∧ (𝐴 × 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
613, 59, 60syl2anc 584 1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603   class class class wbr 5119   × cxp 5652  1oc1o 8473  2oc2o 8474  cen 8956  cdom 8957  csdm 8958  cdju 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-dju 9915
This theorem is referenced by:  canthp1lem2  10667  canthp1  10668
  Copyright terms: Public domain W3C validator