MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   GIF version

Theorem canthp1lem1 9920
Description: Lemma for canthp1 9922. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)

Proof of Theorem canthp1lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1sdom2 8563 . . 3 1o ≺ 2o
2 djuxpdom 9457 . . 3 ((1o𝐴 ∧ 1o ≺ 2o) → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
31, 2mpan2 687 . 2 (1o𝐴 → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
4 sdom0 8496 . . . . . 6 ¬ 1o ≺ ∅
5 breq2 4966 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≺ ∅))
64, 5mtbiri 328 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
76con2i 141 . . . 4 (1o𝐴 → ¬ 𝐴 = ∅)
8 neq0 4229 . . . 4 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
97, 8sylib 219 . . 3 (1o𝐴 → ∃𝑥 𝑥𝐴)
10 relsdom 8364 . . . . . . . . . 10 Rel ≺
1110brrelex2i 5495 . . . . . . . . 9 (1o𝐴𝐴 ∈ V)
1211adantr 481 . . . . . . . 8 ((1o𝐴𝑥𝐴) → 𝐴 ∈ V)
13 enrefg 8389 . . . . . . . 8 (𝐴 ∈ V → 𝐴𝐴)
1412, 13syl 17 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴𝐴)
15 df2o2 7969 . . . . . . . . 9 2o = {∅, {∅}}
16 pwpw0 4653 . . . . . . . . 9 𝒫 {∅} = {∅, {∅}}
1715, 16eqtr4i 2822 . . . . . . . 8 2o = 𝒫 {∅}
18 0ex 5102 . . . . . . . . . 10 ∅ ∈ V
19 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
20 en2sn 8441 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
2118, 19, 20mp2an 688 . . . . . . . . 9 {∅} ≈ {𝑥}
22 pwen 8537 . . . . . . . . 9 ({∅} ≈ {𝑥} → 𝒫 {∅} ≈ 𝒫 {𝑥})
2321, 22ax-mp 5 . . . . . . . 8 𝒫 {∅} ≈ 𝒫 {𝑥}
2417, 23eqbrtri 4983 . . . . . . 7 2o ≈ 𝒫 {𝑥}
25 xpen 8527 . . . . . . 7 ((𝐴𝐴 ∧ 2o ≈ 𝒫 {𝑥}) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
2614, 24, 25sylancl 586 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
27 snex 5223 . . . . . . . 8 {𝑥} ∈ V
2827pwex 5172 . . . . . . 7 𝒫 {𝑥} ∈ V
29 uncom 4050 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥}))
30 simpr 485 . . . . . . . . . . 11 ((1o𝐴𝑥𝐴) → 𝑥𝐴)
3130snssd 4649 . . . . . . . . . 10 ((1o𝐴𝑥𝐴) → {𝑥} ⊆ 𝐴)
32 undif 4344 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3331, 32sylib 219 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3429, 33syl5eq 2843 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
35 difexg 5122 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∖ {𝑥}) ∈ V)
3612, 35syl 17 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ V)
37 canth2g 8518 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}))
38 domunsn 8514 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3936, 37, 383syl 18 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
4034, 39eqbrtrrd 4986 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥}))
41 xpdom1g 8461 . . . . . . 7 ((𝒫 {𝑥} ∈ V ∧ 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4228, 40, 41sylancr 587 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
43 endomtr 8415 . . . . . 6 (((𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4426, 42, 43syl2anc 584 . . . . 5 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
45 pwdjuen 9453 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4636, 27, 45sylancl 586 . . . . . 6 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4746ensymd 8408 . . . . 5 ((1o𝐴𝑥𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
48 domentr 8416 . . . . 5 (((𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ∧ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥})) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4944, 47, 48syl2anc 584 . . . 4 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
5027a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → {𝑥} ∈ V)
51 incom 4099 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐴 ∖ {𝑥}))
52 disjdif 4335 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
5351, 52eqtri 2819 . . . . . . . 8 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅
5453a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
55 endjudisj 9440 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5636, 50, 54, 55syl3anc 1364 . . . . . 6 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5756, 34breqtrd 4988 . . . . 5 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴)
58 pwen 8537 . . . . 5 (((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
5957, 58syl 17 . . . 4 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
60 domentr 8416 . . . 4 (((𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ∧ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
6149, 59, 60syl2anc 584 . . 3 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
629, 61exlimddv 1913 . 2 (1o𝐴 → (𝐴 × 2o) ≼ 𝒫 𝐴)
63 domtr 8410 . 2 (((𝐴 ⊔ 2o) ≼ (𝐴 × 2o) ∧ (𝐴 × 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
643, 62, 63syl2anc 584 1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wex 1761  wcel 2081  Vcvv 3437  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4211  𝒫 cpw 4453  {csn 4472  {cpr 4474   class class class wbr 4962   × cxp 5441  1oc1o 7946  2oc2o 7947  cen 8354  cdom 8355  csdm 8356  cdju 9173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-1o 7953  df-2o 7954  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-dju 9176
This theorem is referenced by:  canthp1lem2  9921  canthp1  9922
  Copyright terms: Public domain W3C validator