MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   GIF version

Theorem canthp1lem1 10543
Description: Lemma for canthp1 10545. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)

Proof of Theorem canthp1lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1sdom2 9132 . . 3 1o ≺ 2o
2 djuxpdom 10077 . . 3 ((1o𝐴 ∧ 1o ≺ 2o) → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
31, 2mpan2 691 . 2 (1o𝐴 → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
4 sdom0 9022 . . . . . 6 ¬ 1o ≺ ∅
5 breq2 5093 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≺ ∅))
64, 5mtbiri 327 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
76con2i 139 . . . 4 (1o𝐴 → ¬ 𝐴 = ∅)
8 neq0 4299 . . . 4 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
97, 8sylib 218 . . 3 (1o𝐴 → ∃𝑥 𝑥𝐴)
10 relsdom 8876 . . . . . . . . . 10 Rel ≺
1110brrelex2i 5671 . . . . . . . . 9 (1o𝐴𝐴 ∈ V)
1211adantr 480 . . . . . . . 8 ((1o𝐴𝑥𝐴) → 𝐴 ∈ V)
13 enrefg 8906 . . . . . . . 8 (𝐴 ∈ V → 𝐴𝐴)
1412, 13syl 17 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴𝐴)
15 df2o2 8394 . . . . . . . . 9 2o = {∅, {∅}}
16 pwpw0 4762 . . . . . . . . 9 𝒫 {∅} = {∅, {∅}}
1715, 16eqtr4i 2757 . . . . . . . 8 2o = 𝒫 {∅}
18 0ex 5243 . . . . . . . . . 10 ∅ ∈ V
19 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
20 en2sn 8963 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
2118, 19, 20mp2an 692 . . . . . . . . 9 {∅} ≈ {𝑥}
22 pwen 9063 . . . . . . . . 9 ({∅} ≈ {𝑥} → 𝒫 {∅} ≈ 𝒫 {𝑥})
2321, 22ax-mp 5 . . . . . . . 8 𝒫 {∅} ≈ 𝒫 {𝑥}
2417, 23eqbrtri 5110 . . . . . . 7 2o ≈ 𝒫 {𝑥}
25 xpen 9053 . . . . . . 7 ((𝐴𝐴 ∧ 2o ≈ 𝒫 {𝑥}) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
2614, 24, 25sylancl 586 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
27 vsnex 5370 . . . . . . . 8 {𝑥} ∈ V
2827pwex 5316 . . . . . . 7 𝒫 {𝑥} ∈ V
29 uncom 4105 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥}))
30 simpr 484 . . . . . . . . . . 11 ((1o𝐴𝑥𝐴) → 𝑥𝐴)
3130snssd 4758 . . . . . . . . . 10 ((1o𝐴𝑥𝐴) → {𝑥} ⊆ 𝐴)
32 undif 4429 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3331, 32sylib 218 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3429, 33eqtrid 2778 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
3512difexd 5267 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ V)
36 canth2g 9044 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}))
37 domunsn 9040 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3835, 36, 373syl 18 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3934, 38eqbrtrrd 5113 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥}))
40 xpdom1g 8987 . . . . . . 7 ((𝒫 {𝑥} ∈ V ∧ 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4128, 39, 40sylancr 587 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
42 endomtr 8934 . . . . . 6 (((𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4326, 41, 42syl2anc 584 . . . . 5 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
44 pwdjuen 10073 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4535, 27, 44sylancl 586 . . . . . 6 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4645ensymd 8927 . . . . 5 ((1o𝐴𝑥𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
47 domentr 8935 . . . . 5 (((𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ∧ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥})) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4843, 46, 47syl2anc 584 . . . 4 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4927a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → {𝑥} ∈ V)
50 disjdifr 4420 . . . . . . . 8 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅
5150a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
52 endjudisj 10060 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5335, 49, 51, 52syl3anc 1373 . . . . . 6 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5453, 34breqtrd 5115 . . . . 5 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴)
55 pwen 9063 . . . . 5 (((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
5654, 55syl 17 . . . 4 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
57 domentr 8935 . . . 4 (((𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ∧ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
5848, 56, 57syl2anc 584 . . 3 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
599, 58exlimddv 1936 . 2 (1o𝐴 → (𝐴 × 2o) ≼ 𝒫 𝐴)
60 domtr 8929 . 2 (((𝐴 ⊔ 2o) ≼ (𝐴 × 2o) ∧ (𝐴 × 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
613, 59, 60syl2anc 584 1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573  {cpr 4575   class class class wbr 5089   × cxp 5612  1oc1o 8378  2oc2o 8379  cen 8866  cdom 8867  csdm 8868  cdju 9791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-dju 9794
This theorem is referenced by:  canthp1lem2  10544  canthp1  10545
  Copyright terms: Public domain W3C validator