MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   GIF version

Theorem canthp1lem1 10266
Description: Lemma for canthp1 10268. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)

Proof of Theorem canthp1lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1sdom2 8877 . . 3 1o ≺ 2o
2 djuxpdom 9799 . . 3 ((1o𝐴 ∧ 1o ≺ 2o) → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
31, 2mpan2 691 . 2 (1o𝐴 → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
4 sdom0 8778 . . . . . 6 ¬ 1o ≺ ∅
5 breq2 5057 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≺ ∅))
64, 5mtbiri 330 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
76con2i 141 . . . 4 (1o𝐴 → ¬ 𝐴 = ∅)
8 neq0 4260 . . . 4 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
97, 8sylib 221 . . 3 (1o𝐴 → ∃𝑥 𝑥𝐴)
10 relsdom 8633 . . . . . . . . . 10 Rel ≺
1110brrelex2i 5606 . . . . . . . . 9 (1o𝐴𝐴 ∈ V)
1211adantr 484 . . . . . . . 8 ((1o𝐴𝑥𝐴) → 𝐴 ∈ V)
13 enrefg 8660 . . . . . . . 8 (𝐴 ∈ V → 𝐴𝐴)
1412, 13syl 17 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴𝐴)
15 df2o2 8218 . . . . . . . . 9 2o = {∅, {∅}}
16 pwpw0 4726 . . . . . . . . 9 𝒫 {∅} = {∅, {∅}}
1715, 16eqtr4i 2768 . . . . . . . 8 2o = 𝒫 {∅}
18 0ex 5200 . . . . . . . . . 10 ∅ ∈ V
19 vex 3412 . . . . . . . . . 10 𝑥 ∈ V
20 en2sn 8718 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
2118, 19, 20mp2an 692 . . . . . . . . 9 {∅} ≈ {𝑥}
22 pwen 8819 . . . . . . . . 9 ({∅} ≈ {𝑥} → 𝒫 {∅} ≈ 𝒫 {𝑥})
2321, 22ax-mp 5 . . . . . . . 8 𝒫 {∅} ≈ 𝒫 {𝑥}
2417, 23eqbrtri 5074 . . . . . . 7 2o ≈ 𝒫 {𝑥}
25 xpen 8809 . . . . . . 7 ((𝐴𝐴 ∧ 2o ≈ 𝒫 {𝑥}) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
2614, 24, 25sylancl 589 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
27 snex 5324 . . . . . . . 8 {𝑥} ∈ V
2827pwex 5273 . . . . . . 7 𝒫 {𝑥} ∈ V
29 uncom 4067 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥}))
30 simpr 488 . . . . . . . . . . 11 ((1o𝐴𝑥𝐴) → 𝑥𝐴)
3130snssd 4722 . . . . . . . . . 10 ((1o𝐴𝑥𝐴) → {𝑥} ⊆ 𝐴)
32 undif 4396 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3331, 32sylib 221 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3429, 33eqtrid 2789 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
3512difexd 5222 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ V)
36 canth2g 8800 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}))
37 domunsn 8796 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3835, 36, 373syl 18 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3934, 38eqbrtrrd 5077 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥}))
40 xpdom1g 8742 . . . . . . 7 ((𝒫 {𝑥} ∈ V ∧ 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4128, 39, 40sylancr 590 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
42 endomtr 8686 . . . . . 6 (((𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4326, 41, 42syl2anc 587 . . . . 5 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
44 pwdjuen 9795 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4535, 27, 44sylancl 589 . . . . . 6 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4645ensymd 8679 . . . . 5 ((1o𝐴𝑥𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
47 domentr 8687 . . . . 5 (((𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ∧ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥})) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4843, 46, 47syl2anc 587 . . . 4 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4927a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → {𝑥} ∈ V)
50 disjdifr 4387 . . . . . . . 8 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅
5150a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
52 endjudisj 9782 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5335, 49, 51, 52syl3anc 1373 . . . . . 6 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5453, 34breqtrd 5079 . . . . 5 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴)
55 pwen 8819 . . . . 5 (((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
5654, 55syl 17 . . . 4 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
57 domentr 8687 . . . 4 (((𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ∧ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
5848, 56, 57syl2anc 587 . . 3 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
599, 58exlimddv 1943 . 2 (1o𝐴 → (𝐴 × 2o) ≼ 𝒫 𝐴)
60 domtr 8681 . 2 (((𝐴 ⊔ 2o) ≼ (𝐴 × 2o) ∧ (𝐴 × 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
613, 59, 60syl2anc 587 1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  Vcvv 3408  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237  𝒫 cpw 4513  {csn 4541  {cpr 4543   class class class wbr 5053   × cxp 5549  1oc1o 8195  2oc2o 8196  cen 8623  cdom 8624  csdm 8625  cdju 9514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-dju 9517
This theorem is referenced by:  canthp1lem2  10267  canthp1  10268
  Copyright terms: Public domain W3C validator