MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   GIF version

Theorem canthp1lem1 10695
Description: Lemma for canthp1 10697. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)

Proof of Theorem canthp1lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1sdom2 9274 . . 3 1o ≺ 2o
2 djuxpdom 10228 . . 3 ((1o𝐴 ∧ 1o ≺ 2o) → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
31, 2mpan2 689 . 2 (1o𝐴 → (𝐴 ⊔ 2o) ≼ (𝐴 × 2o))
4 sdom0 9146 . . . . . 6 ¬ 1o ≺ ∅
5 breq2 5157 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≺ ∅))
64, 5mtbiri 326 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
76con2i 139 . . . 4 (1o𝐴 → ¬ 𝐴 = ∅)
8 neq0 4348 . . . 4 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
97, 8sylib 217 . . 3 (1o𝐴 → ∃𝑥 𝑥𝐴)
10 relsdom 8981 . . . . . . . . . 10 Rel ≺
1110brrelex2i 5739 . . . . . . . . 9 (1o𝐴𝐴 ∈ V)
1211adantr 479 . . . . . . . 8 ((1o𝐴𝑥𝐴) → 𝐴 ∈ V)
13 enrefg 9015 . . . . . . . 8 (𝐴 ∈ V → 𝐴𝐴)
1412, 13syl 17 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴𝐴)
15 df2o2 8505 . . . . . . . . 9 2o = {∅, {∅}}
16 pwpw0 4822 . . . . . . . . 9 𝒫 {∅} = {∅, {∅}}
1715, 16eqtr4i 2757 . . . . . . . 8 2o = 𝒫 {∅}
18 0ex 5312 . . . . . . . . . 10 ∅ ∈ V
19 vex 3466 . . . . . . . . . 10 𝑥 ∈ V
20 en2sn 9077 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
2118, 19, 20mp2an 690 . . . . . . . . 9 {∅} ≈ {𝑥}
22 pwen 9188 . . . . . . . . 9 ({∅} ≈ {𝑥} → 𝒫 {∅} ≈ 𝒫 {𝑥})
2321, 22ax-mp 5 . . . . . . . 8 𝒫 {∅} ≈ 𝒫 {𝑥}
2417, 23eqbrtri 5174 . . . . . . 7 2o ≈ 𝒫 {𝑥}
25 xpen 9178 . . . . . . 7 ((𝐴𝐴 ∧ 2o ≈ 𝒫 {𝑥}) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
2614, 24, 25sylancl 584 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}))
27 vsnex 5435 . . . . . . . 8 {𝑥} ∈ V
2827pwex 5384 . . . . . . 7 𝒫 {𝑥} ∈ V
29 uncom 4153 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥}))
30 simpr 483 . . . . . . . . . . 11 ((1o𝐴𝑥𝐴) → 𝑥𝐴)
3130snssd 4818 . . . . . . . . . 10 ((1o𝐴𝑥𝐴) → {𝑥} ⊆ 𝐴)
32 undif 4486 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3331, 32sylib 217 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3429, 33eqtrid 2778 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
3512difexd 5336 . . . . . . . . 9 ((1o𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ V)
36 canth2g 9169 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}))
37 domunsn 9165 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3835, 36, 373syl 18 . . . . . . . 8 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3934, 38eqbrtrrd 5177 . . . . . . 7 ((1o𝐴𝑥𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥}))
40 xpdom1g 9107 . . . . . . 7 ((𝒫 {𝑥} ∈ V ∧ 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4128, 39, 40sylancr 585 . . . . . 6 ((1o𝐴𝑥𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
42 endomtr 9043 . . . . . 6 (((𝐴 × 2o) ≈ (𝐴 × 𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4326, 41, 42syl2anc 582 . . . . 5 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
44 pwdjuen 10224 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4535, 27, 44sylancl 584 . . . . . 6 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4645ensymd 9036 . . . . 5 ((1o𝐴𝑥𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
47 domentr 9044 . . . . 5 (((𝐴 × 2o) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ∧ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥})) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4843, 46, 47syl2anc 582 . . . 4 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}))
4927a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → {𝑥} ∈ V)
50 disjdifr 4477 . . . . . . . 8 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅
5150a1i 11 . . . . . . 7 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
52 endjudisj 10211 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5335, 49, 51, 52syl3anc 1368 . . . . . 6 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5453, 34breqtrd 5179 . . . . 5 ((1o𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴)
55 pwen 9188 . . . . 5 (((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
5654, 55syl 17 . . . 4 ((1o𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴)
57 domentr 9044 . . . 4 (((𝐴 × 2o) ≼ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ∧ 𝒫 ((𝐴 ∖ {𝑥}) ⊔ {𝑥}) ≈ 𝒫 𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
5848, 56, 57syl2anc 582 . . 3 ((1o𝐴𝑥𝐴) → (𝐴 × 2o) ≼ 𝒫 𝐴)
599, 58exlimddv 1931 . 2 (1o𝐴 → (𝐴 × 2o) ≼ 𝒫 𝐴)
60 domtr 9038 . 2 (((𝐴 ⊔ 2o) ≼ (𝐴 × 2o) ∧ (𝐴 × 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
613, 59, 60syl2anc 582 1 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wex 1774  wcel 2099  Vcvv 3462  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4325  𝒫 cpw 4607  {csn 4633  {cpr 4635   class class class wbr 5153   × cxp 5680  1oc1o 8489  2oc2o 8490  cen 8971  cdom 8972  csdm 8973  cdju 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-dju 9944
This theorem is referenced by:  canthp1lem2  10696  canthp1  10697
  Copyright terms: Public domain W3C validator