MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Visualization version   GIF version

Theorem canthp1lem1 9676
Description: Lemma for canthp1 9678. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)

Proof of Theorem canthp1lem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1sdom2 8315 . . 3 1𝑜 ≺ 2𝑜
2 cdaxpdom 9213 . . 3 ((1𝑜𝐴 ∧ 1𝑜 ≺ 2𝑜) → (𝐴 +𝑐 2𝑜) ≼ (𝐴 × 2𝑜))
31, 2mpan2 671 . 2 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ (𝐴 × 2𝑜))
4 sdom0 8248 . . . . . 6 ¬ 1𝑜 ≺ ∅
5 breq2 4790 . . . . . 6 (𝐴 = ∅ → (1𝑜𝐴 ↔ 1𝑜 ≺ ∅))
64, 5mtbiri 316 . . . . 5 (𝐴 = ∅ → ¬ 1𝑜𝐴)
76con2i 136 . . . 4 (1𝑜𝐴 → ¬ 𝐴 = ∅)
8 neq0 4077 . . . 4 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
97, 8sylib 208 . . 3 (1𝑜𝐴 → ∃𝑥 𝑥𝐴)
10 relsdom 8116 . . . . . . . . . 10 Rel ≺
1110brrelex2i 5299 . . . . . . . . 9 (1𝑜𝐴𝐴 ∈ V)
1211adantr 466 . . . . . . . 8 ((1𝑜𝐴𝑥𝐴) → 𝐴 ∈ V)
13 enrefg 8141 . . . . . . . 8 (𝐴 ∈ V → 𝐴𝐴)
1412, 13syl 17 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → 𝐴𝐴)
15 df2o2 7728 . . . . . . . . 9 2𝑜 = {∅, {∅}}
16 pwpw0 4479 . . . . . . . . 9 𝒫 {∅} = {∅, {∅}}
1715, 16eqtr4i 2796 . . . . . . . 8 2𝑜 = 𝒫 {∅}
18 0ex 4924 . . . . . . . . . 10 ∅ ∈ V
19 vex 3354 . . . . . . . . . 10 𝑥 ∈ V
20 en2sn 8193 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
2118, 19, 20mp2an 672 . . . . . . . . 9 {∅} ≈ {𝑥}
22 pwen 8289 . . . . . . . . 9 ({∅} ≈ {𝑥} → 𝒫 {∅} ≈ 𝒫 {𝑥})
2321, 22ax-mp 5 . . . . . . . 8 𝒫 {∅} ≈ 𝒫 {𝑥}
2417, 23eqbrtri 4807 . . . . . . 7 2𝑜 ≈ 𝒫 {𝑥}
25 xpen 8279 . . . . . . 7 ((𝐴𝐴 ∧ 2𝑜 ≈ 𝒫 {𝑥}) → (𝐴 × 2𝑜) ≈ (𝐴 × 𝒫 {𝑥}))
2614, 24, 25sylancl 574 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≈ (𝐴 × 𝒫 {𝑥}))
27 snex 5036 . . . . . . . 8 {𝑥} ∈ V
2827pwex 4981 . . . . . . 7 𝒫 {𝑥} ∈ V
29 uncom 3908 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = ({𝑥} ∪ (𝐴 ∖ {𝑥}))
30 simpr 471 . . . . . . . . . . 11 ((1𝑜𝐴𝑥𝐴) → 𝑥𝐴)
3130snssd 4475 . . . . . . . . . 10 ((1𝑜𝐴𝑥𝐴) → {𝑥} ⊆ 𝐴)
32 undif 4191 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3331, 32sylib 208 . . . . . . . . 9 ((1𝑜𝐴𝑥𝐴) → ({𝑥} ∪ (𝐴 ∖ {𝑥})) = 𝐴)
3429, 33syl5eq 2817 . . . . . . . 8 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
35 difexg 4942 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∖ {𝑥}) ∈ V)
3612, 35syl 17 . . . . . . . . 9 ((1𝑜𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ V)
37 canth2g 8270 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∈ V → (𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}))
38 domunsn 8266 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ≺ 𝒫 (𝐴 ∖ {𝑥}) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
3936, 37, 383syl 18 . . . . . . . 8 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ≼ 𝒫 (𝐴 ∖ {𝑥}))
4034, 39eqbrtrrd 4810 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥}))
41 xpdom1g 8213 . . . . . . 7 ((𝒫 {𝑥} ∈ V ∧ 𝐴 ≼ 𝒫 (𝐴 ∖ {𝑥})) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4228, 40, 41sylancr 575 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
43 endomtr 8167 . . . . . 6 (((𝐴 × 2𝑜) ≈ (𝐴 × 𝒫 {𝑥}) ∧ (𝐴 × 𝒫 {𝑥}) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥})) → (𝐴 × 2𝑜) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4426, 42, 43syl2anc 573 . . . . 5 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
45 pwcdaen 9209 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4636, 27, 45sylancl 574 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}))
4746ensymd 8160 . . . . 5 ((1𝑜𝐴𝑥𝐴) → (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}))
48 domentr 8168 . . . . 5 (((𝐴 × 2𝑜) ≼ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ∧ (𝒫 (𝐴 ∖ {𝑥}) × 𝒫 {𝑥}) ≈ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥})) → (𝐴 × 2𝑜) ≼ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}))
4944, 47, 48syl2anc 573 . . . 4 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≼ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}))
5027a1i 11 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → {𝑥} ∈ V)
51 incom 3956 . . . . . . . . 9 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐴 ∖ {𝑥}))
52 disjdif 4182 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
5351, 52eqtri 2793 . . . . . . . 8 ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅
5453a1i 11 . . . . . . 7 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
55 cdaun 9196 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∈ V ∧ {𝑥} ∈ V ∧ ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5636, 50, 54, 55syl3anc 1476 . . . . . 6 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
5756, 34breqtrd 4812 . . . . 5 ((1𝑜𝐴𝑥𝐴) → ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝐴)
58 pwen 8289 . . . . 5 (((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝐴 → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴)
5957, 58syl 17 . . . 4 ((1𝑜𝐴𝑥𝐴) → 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴)
60 domentr 8168 . . . 4 (((𝐴 × 2𝑜) ≼ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ∧ 𝒫 ((𝐴 ∖ {𝑥}) +𝑐 {𝑥}) ≈ 𝒫 𝐴) → (𝐴 × 2𝑜) ≼ 𝒫 𝐴)
6149, 59, 60syl2anc 573 . . 3 ((1𝑜𝐴𝑥𝐴) → (𝐴 × 2𝑜) ≼ 𝒫 𝐴)
629, 61exlimddv 2015 . 2 (1𝑜𝐴 → (𝐴 × 2𝑜) ≼ 𝒫 𝐴)
63 domtr 8162 . 2 (((𝐴 +𝑐 2𝑜) ≼ (𝐴 × 2𝑜) ∧ (𝐴 × 2𝑜) ≼ 𝒫 𝐴) → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
643, 62, 63syl2anc 573 1 (1𝑜𝐴 → (𝐴 +𝑐 2𝑜) ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wex 1852  wcel 2145  Vcvv 3351  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  {csn 4316  {cpr 4318   class class class wbr 4786   × cxp 5247  (class class class)co 6793  1𝑜c1o 7706  2𝑜c2o 7707  cen 8106  cdom 8107  csdm 8108   +𝑐 ccda 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-1o 7713  df-2o 7714  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-cda 9192
This theorem is referenced by:  canthp1lem2  9677  canthp1  9678
  Copyright terms: Public domain W3C validator