Step | Hyp | Ref
| Expression |
1 | | 2z 12282 |
. . . . . 6
⊢ 2 ∈
ℤ |
2 | 1 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ∈
ℤ) |
3 | | nnz 12272 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈
ℤ) |
5 | | hash2 14048 |
. . . . . . 7
⊢
(♯‘2o) = 2 |
6 | | isidom 20488 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) |
7 | 6 | simprbi 496 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ IDomn → 𝑌 ∈ Domn) |
8 | | domnnzr 20479 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Domn → 𝑌 ∈ NzRing) |
9 | 7, 8 | syl 17 |
. . . . . . . . . 10
⊢ (𝑌 ∈ IDomn → 𝑌 ∈ NzRing) |
10 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑌) =
(Base‘𝑌) |
11 | 10 | isnzr2 20447 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o
≼ (Base‘𝑌))) |
12 | 11 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑌 ∈ NzRing →
2o ≼ (Base‘𝑌)) |
13 | 9, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝑌 ∈ IDomn →
2o ≼ (Base‘𝑌)) |
14 | 13 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
2o ≼ (Base‘𝑌)) |
15 | | df2o2 8283 |
. . . . . . . . . 10
⊢
2o = {∅, {∅}} |
16 | | prfi 9019 |
. . . . . . . . . 10
⊢ {∅,
{∅}} ∈ Fin |
17 | 15, 16 | eqeltri 2835 |
. . . . . . . . 9
⊢
2o ∈ Fin |
18 | | fvex 6769 |
. . . . . . . . 9
⊢
(Base‘𝑌)
∈ V |
19 | | hashdom 14022 |
. . . . . . . . 9
⊢
((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) →
((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼
(Base‘𝑌))) |
20 | 17, 18, 19 | mp2an 688 |
. . . . . . . 8
⊢
((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼
(Base‘𝑌)) |
21 | 14, 20 | sylibr 233 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
(♯‘2o) ≤ (♯‘(Base‘𝑌))) |
22 | 5, 21 | eqbrtrrid 5106 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤
(♯‘(Base‘𝑌))) |
23 | | zntos.y |
. . . . . . . 8
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
24 | 23, 10 | znhash 20678 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(♯‘(Base‘𝑌)) = 𝑁) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
(♯‘(Base‘𝑌)) = 𝑁) |
26 | 22, 25 | breqtrd 5096 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤
𝑁) |
27 | | eluz2 12517 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤
𝑁)) |
28 | 2, 4, 26, 27 | syl3anbrc 1341 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈
(ℤ≥‘2)) |
29 | | nncn 11911 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
30 | 29 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈ ℂ) |
31 | | nncn 11911 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℂ) |
32 | 31 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℂ) |
33 | | nnne0 11937 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) |
34 | 33 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ≠ 0) |
35 | 30, 32, 34 | divcan1d 11682 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((𝑁 / 𝑥) · 𝑥) = 𝑁) |
36 | 35 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = ((ℤRHom‘𝑌)‘𝑁)) |
37 | 7 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑌 ∈ Domn) |
38 | | domnring 20480 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ Domn → 𝑌 ∈ Ring) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑌 ∈ Ring) |
40 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) |
41 | 40 | zrhrhm 20625 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring →
(ℤRHom‘𝑌)
∈ (ℤring RingHom 𝑌)) |
42 | 39, 41 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (ℤRHom‘𝑌) ∈ (ℤring
RingHom 𝑌)) |
43 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∥ 𝑁) |
44 | | nnz 12272 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
45 | 44 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℤ) |
46 | 3 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈ ℤ) |
47 | | dvdsval2 15894 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ)) |
48 | 45, 34, 46, 47 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 ∥ 𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ)) |
49 | 43, 48 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 / 𝑥) ∈ ℤ) |
50 | | zringbas 20588 |
. . . . . . . . . . 11
⊢ ℤ =
(Base‘ℤring) |
51 | | zringmulr 20591 |
. . . . . . . . . . 11
⊢ ·
= (.r‘ℤring) |
52 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑌) = (.r‘𝑌) |
53 | 50, 51, 52 | rhmmul 19886 |
. . . . . . . . . 10
⊢
(((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) ∧ (𝑁 / 𝑥) ∈ ℤ ∧ 𝑥 ∈ ℤ) →
((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥))) |
54 | 42, 49, 45, 53 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥))) |
55 | | iddvds 15907 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) |
56 | 46, 55 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∥ 𝑁) |
57 | | nnnn0 12170 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
58 | 57 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈
ℕ0) |
59 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝑌) = (0g‘𝑌) |
60 | 23, 40, 59 | zndvds0 20670 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑁) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑁)) |
61 | 58, 46, 60 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘𝑁) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑁)) |
62 | 56, 61 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘𝑁) = (0g‘𝑌)) |
63 | 36, 54, 62 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g‘𝑌)) |
64 | 50, 10 | rhmf 19885 |
. . . . . . . . . . 11
⊢
((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) →
(ℤRHom‘𝑌):ℤ⟶(Base‘𝑌)) |
65 | 42, 64 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌)) |
66 | 65, 49 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌)) |
67 | 65, 45 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) |
68 | 10, 52, 59 | domneq0 20481 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Domn ∧
((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌) ∧ ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g‘𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌)))) |
69 | 37, 66, 67, 68 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r‘𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g‘𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌)))) |
70 | 63, 69 | mpbid 231 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌))) |
71 | 23, 40, 59 | zndvds0 20670 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 / 𝑥) ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥))) |
72 | 58, 49, 71 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥))) |
73 | | nnre 11910 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
74 | 73 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑁 ∈ ℝ) |
75 | | nnre 11910 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
76 | 75 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℝ) |
77 | | nngt0 11934 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
78 | 77 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < 𝑁) |
79 | | nngt0 11934 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℕ → 0 <
𝑥) |
80 | 79 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < 𝑥) |
81 | 74, 76, 78, 80 | divgt0d 11840 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < (𝑁 / 𝑥)) |
82 | | elnnz 12259 |
. . . . . . . . . . . 12
⊢ ((𝑁 / 𝑥) ∈ ℕ ↔ ((𝑁 / 𝑥) ∈ ℤ ∧ 0 < (𝑁 / 𝑥))) |
83 | 49, 81, 82 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 / 𝑥) ∈ ℕ) |
84 | | dvdsle 15947 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 / 𝑥) ∈ ℕ) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥))) |
85 | 46, 83, 84 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥))) |
86 | | 1red 10907 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 1 ∈ ℝ) |
87 | | 0lt1 11427 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
88 | 87 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 0 < 1) |
89 | | lediv2 11795 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 0 <
𝑥) ∧ (1 ∈ ℝ
∧ 0 < 1) ∧ (𝑁
∈ ℝ ∧ 0 < 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥))) |
90 | 76, 80, 86, 88, 74, 78, 89 | syl222anc 1384 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥))) |
91 | | nnle1eq1 11933 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ → (𝑥 ≤ 1 ↔ 𝑥 = 1)) |
92 | 91 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 ≤ 1 ↔ 𝑥 = 1)) |
93 | 30 | div1d 11673 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 / 1) = 𝑁) |
94 | 93 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((𝑁 / 1) ≤ (𝑁 / 𝑥) ↔ 𝑁 ≤ (𝑁 / 𝑥))) |
95 | 90, 92, 94 | 3bitr3rd 309 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ≤ (𝑁 / 𝑥) ↔ 𝑥 = 1)) |
96 | 85, 95 | sylibd 238 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑥 = 1)) |
97 | 72, 96 | sylbid 239 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) → 𝑥 = 1)) |
98 | 23, 40, 59 | zndvds0 20670 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑥)) |
99 | 58, 45, 98 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑥)) |
100 | | nnnn0 12170 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
101 | 100 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → 𝑥 ∈ ℕ0) |
102 | | dvdseq 15951 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ (𝑥 ∥ 𝑁 ∧ 𝑁 ∥ 𝑥)) → 𝑥 = 𝑁) |
103 | 102 | expr 456 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑥 ∥ 𝑁) → (𝑁 ∥ 𝑥 → 𝑥 = 𝑁)) |
104 | 101, 58, 43, 103 | syl21anc 834 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑁 ∥ 𝑥 → 𝑥 = 𝑁)) |
105 | 99, 104 | sylbid 239 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌) → 𝑥 = 𝑁)) |
106 | 97, 105 | orim12d 961 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g‘𝑌)) → (𝑥 = 1 ∨ 𝑥 = 𝑁))) |
107 | 70, 106 | mpd 15 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁)) → (𝑥 = 1 ∨ 𝑥 = 𝑁)) |
108 | 107 | expr 456 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ 𝑥 ∈ ℕ) → (𝑥 ∥ 𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))) |
109 | 108 | ralrimiva 3107 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) →
∀𝑥 ∈ ℕ
(𝑥 ∥ 𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))) |
110 | | isprm2 16315 |
. . . 4
⊢ (𝑁 ∈ ℙ ↔ (𝑁 ∈
(ℤ≥‘2) ∧ ∀𝑥 ∈ ℕ (𝑥 ∥ 𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))) |
111 | 28, 109, 110 | sylanbrc 582 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈
ℙ) |
112 | 111 | ex 412 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn → 𝑁 ∈
ℙ)) |
113 | 23 | znfld 20680 |
. . 3
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ Field) |
114 | | fldidom 20489 |
. . 3
⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) |
115 | 113, 114 | syl 17 |
. 2
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ IDomn) |
116 | 112, 115 | impbid1 224 |
1
⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈
ℙ)) |