MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znidomb Structured version   Visualization version   GIF version

Theorem znidomb 21522
Description: The ℤ/n structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znidomb (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))

Proof of Theorem znidomb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2z 12624 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ∈ ℤ)
3 nnz 12609 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
43adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℤ)
5 hash2 14423 . . . . . . 7 (♯‘2o) = 2
6 isidom 20685 . . . . . . . . . . . 12 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
76simprbi 496 . . . . . . . . . . 11 (𝑌 ∈ IDomn → 𝑌 ∈ Domn)
8 domnnzr 20666 . . . . . . . . . . 11 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
97, 8syl 17 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
10 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑌) = (Base‘𝑌)
1110isnzr2 20478 . . . . . . . . . . 11 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
1211simprbi 496 . . . . . . . . . 10 (𝑌 ∈ NzRing → 2o ≼ (Base‘𝑌))
139, 12syl 17 . . . . . . . . 9 (𝑌 ∈ IDomn → 2o ≼ (Base‘𝑌))
1413adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2o ≼ (Base‘𝑌))
15 df2o2 8489 . . . . . . . . . 10 2o = {∅, {∅}}
16 prfi 9335 . . . . . . . . . 10 {∅, {∅}} ∈ Fin
1715, 16eqeltri 2830 . . . . . . . . 9 2o ∈ Fin
18 fvex 6889 . . . . . . . . 9 (Base‘𝑌) ∈ V
19 hashdom 14397 . . . . . . . . 9 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2017, 18, 19mp2an 692 . . . . . . . 8 ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌))
2114, 20sylibr 234 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
225, 21eqbrtrrid 5155 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ (♯‘(Base‘𝑌)))
23 zntos.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
2423, 10znhash 21519 . . . . . . 7 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
2524adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘(Base‘𝑌)) = 𝑁)
2622, 25breqtrd 5145 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ 𝑁)
27 eluz2 12858 . . . . 5 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
282, 4, 26, 27syl3anbrc 1344 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ (ℤ‘2))
29 nncn 12248 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3029ad2antrr 726 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℂ)
31 nncn 12248 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
3231ad2antrl 728 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℂ)
33 nnne0 12274 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
3433ad2antrl 728 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ≠ 0)
3530, 32, 34divcan1d 12018 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 𝑥) · 𝑥) = 𝑁)
3635fveq2d 6880 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = ((ℤRHom‘𝑌)‘𝑁))
377ad2antlr 727 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Domn)
38 domnring 20667 . . . . . . . . . . . 12 (𝑌 ∈ Domn → 𝑌 ∈ Ring)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Ring)
40 eqid 2735 . . . . . . . . . . . 12 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
4140zrhrhm 21472 . . . . . . . . . . 11 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
4239, 41syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
43 simprr 772 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥𝑁)
44 nnz 12609 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
4544ad2antrl 728 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℤ)
463ad2antrr 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℤ)
47 dvdsval2 16275 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4845, 34, 46, 47syl3anc 1373 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4943, 48mpbid 232 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℤ)
50 zringbas 21414 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
51 zringmulr 21418 . . . . . . . . . . 11 · = (.r‘ℤring)
52 eqid 2735 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
5350, 51, 52rhmmul 20446 . . . . . . . . . 10 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ (𝑁 / 𝑥) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
5442, 49, 45, 53syl3anc 1373 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
55 iddvds 16289 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁𝑁)
5646, 55syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁𝑁)
57 nnnn0 12508 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
5857ad2antrr 726 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℕ0)
59 eqid 2735 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
6023, 40, 59zndvds0 21511 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑁 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6158, 46, 60syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6256, 61mpbird 257 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑁) = (0g𝑌))
6336, 54, 623eqtr3d 2778 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌))
6450, 10rhmf 20445 . . . . . . . . . . 11 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6542, 64syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6665, 49ffvelcdmd 7075 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌))
6765, 45ffvelcdmd 7075 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌))
6810, 52, 59domneq0 20668 . . . . . . . . 9 ((𝑌 ∈ Domn ∧ ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌) ∧ ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
6937, 66, 67, 68syl3anc 1373 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
7063, 69mpbid 232 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)))
7123, 40, 59zndvds0 21511 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 𝑥) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
7258, 49, 71syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
73 nnre 12247 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7473ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℝ)
75 nnre 12247 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
7675ad2antrl 728 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℝ)
77 nngt0 12271 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 0 < 𝑁)
7877ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑁)
79 nngt0 12271 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 0 < 𝑥)
8079ad2antrl 728 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑥)
8174, 76, 78, 80divgt0d 12177 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < (𝑁 / 𝑥))
82 elnnz 12598 . . . . . . . . . . . 12 ((𝑁 / 𝑥) ∈ ℕ ↔ ((𝑁 / 𝑥) ∈ ℤ ∧ 0 < (𝑁 / 𝑥)))
8349, 81, 82sylanbrc 583 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℕ)
84 dvdsle 16329 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 / 𝑥) ∈ ℕ) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
8546, 83, 84syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
86 1red 11236 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 1 ∈ ℝ)
87 0lt1 11759 . . . . . . . . . . . . 13 0 < 1
8887a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 1)
89 lediv2 12132 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
9076, 80, 86, 88, 74, 78, 89syl222anc 1388 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
91 nnle1eq1 12270 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9291ad2antrl 728 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9330div1d 12009 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 1) = 𝑁)
9493breq1d 5129 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 1) ≤ (𝑁 / 𝑥) ↔ 𝑁 ≤ (𝑁 / 𝑥)))
9590, 92, 943bitr3rd 310 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ≤ (𝑁 / 𝑥) ↔ 𝑥 = 1))
9685, 95sylibd 239 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑥 = 1))
9772, 96sylbid 240 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) → 𝑥 = 1))
9823, 40, 59zndvds0 21511 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
9958, 45, 98syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
100 nnnn0 12508 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
101100ad2antrl 728 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℕ0)
102 dvdseq 16333 . . . . . . . . . . 11 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑥𝑁𝑁𝑥)) → 𝑥 = 𝑁)
103102expr 456 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑥𝑁) → (𝑁𝑥𝑥 = 𝑁))
104101, 58, 43, 103syl21anc 837 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁𝑥𝑥 = 𝑁))
10599, 104sylbid 240 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) → 𝑥 = 𝑁))
10697, 105orim12d 966 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)) → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
10770, 106mpd 15 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 = 1 ∨ 𝑥 = 𝑁))
108107expr 456 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ 𝑥 ∈ ℕ) → (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
109108ralrimiva 3132 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
110 isprm2 16701 . . . 4 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))))
11128, 109, 110sylanbrc 583 . . 3 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℙ)
112111ex 412 . 2 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn → 𝑁 ∈ ℙ))
11323znfld 21521 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
114 fldidom 20731 . . 3 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
115113, 114syl 17 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
116112, 115impbid1 225 1 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  c0 4308  {csn 4601  {cpr 4603   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  2oc2o 8474  cdom 8957  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  chash 14348  cdvds 16272  cprime 16690  Basecbs 17228  .rcmulr 17272  0gc0g 17453  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  NzRingcnzr 20472  Domncdomn 20652  IDomncidom 20653  Fieldcfield 20690  ringczring 21407  ℤRHomczrh 21460  ℤ/nczn 21463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator