MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znidomb Structured version   Visualization version   GIF version

Theorem znidomb 20344
Description: The ℤ/n structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znidomb (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))

Proof of Theorem znidomb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2z 12067 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ∈ ℤ)
3 nnz 12057 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
43adantr 484 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℤ)
5 hash2 13830 . . . . . . 7 (♯‘2o) = 2
6 isidom 20160 . . . . . . . . . . . 12 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
76simprbi 500 . . . . . . . . . . 11 (𝑌 ∈ IDomn → 𝑌 ∈ Domn)
8 domnnzr 20151 . . . . . . . . . . 11 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
97, 8syl 17 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
10 eqid 2759 . . . . . . . . . . . 12 (Base‘𝑌) = (Base‘𝑌)
1110isnzr2 20119 . . . . . . . . . . 11 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
1211simprbi 500 . . . . . . . . . 10 (𝑌 ∈ NzRing → 2o ≼ (Base‘𝑌))
139, 12syl 17 . . . . . . . . 9 (𝑌 ∈ IDomn → 2o ≼ (Base‘𝑌))
1413adantl 485 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2o ≼ (Base‘𝑌))
15 df2o2 8135 . . . . . . . . . 10 2o = {∅, {∅}}
16 prfi 8840 . . . . . . . . . 10 {∅, {∅}} ∈ Fin
1715, 16eqeltri 2849 . . . . . . . . 9 2o ∈ Fin
18 fvex 6677 . . . . . . . . 9 (Base‘𝑌) ∈ V
19 hashdom 13804 . . . . . . . . 9 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2017, 18, 19mp2an 691 . . . . . . . 8 ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌))
2114, 20sylibr 237 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
225, 21eqbrtrrid 5073 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ (♯‘(Base‘𝑌)))
23 zntos.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
2423, 10znhash 20341 . . . . . . 7 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
2524adantr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (♯‘(Base‘𝑌)) = 𝑁)
2622, 25breqtrd 5063 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ 𝑁)
27 eluz2 12302 . . . . 5 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
282, 4, 26, 27syl3anbrc 1341 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ (ℤ‘2))
29 nncn 11696 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3029ad2antrr 725 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℂ)
31 nncn 11696 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
3231ad2antrl 727 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℂ)
33 nnne0 11722 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
3433ad2antrl 727 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ≠ 0)
3530, 32, 34divcan1d 11469 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 𝑥) · 𝑥) = 𝑁)
3635fveq2d 6668 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = ((ℤRHom‘𝑌)‘𝑁))
377ad2antlr 726 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Domn)
38 domnring 20152 . . . . . . . . . . . 12 (𝑌 ∈ Domn → 𝑌 ∈ Ring)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Ring)
40 eqid 2759 . . . . . . . . . . . 12 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
4140zrhrhm 20296 . . . . . . . . . . 11 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
4239, 41syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
43 simprr 772 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥𝑁)
44 nnz 12057 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
4544ad2antrl 727 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℤ)
463ad2antrr 725 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℤ)
47 dvdsval2 15672 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4845, 34, 46, 47syl3anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4943, 48mpbid 235 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℤ)
50 zringbas 20259 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
51 zringmulr 20262 . . . . . . . . . . 11 · = (.r‘ℤring)
52 eqid 2759 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
5350, 51, 52rhmmul 19565 . . . . . . . . . 10 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ (𝑁 / 𝑥) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
5442, 49, 45, 53syl3anc 1369 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
55 iddvds 15685 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁𝑁)
5646, 55syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁𝑁)
57 nnnn0 11955 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
5857ad2antrr 725 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℕ0)
59 eqid 2759 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
6023, 40, 59zndvds0 20333 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑁 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6158, 46, 60syl2anc 587 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6256, 61mpbird 260 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑁) = (0g𝑌))
6336, 54, 623eqtr3d 2802 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌))
6450, 10rhmf 19564 . . . . . . . . . . 11 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6542, 64syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6665, 49ffvelrnd 6850 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌))
6765, 45ffvelrnd 6850 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌))
6810, 52, 59domneq0 20153 . . . . . . . . 9 ((𝑌 ∈ Domn ∧ ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌) ∧ ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
6937, 66, 67, 68syl3anc 1369 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
7063, 69mpbid 235 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)))
7123, 40, 59zndvds0 20333 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 𝑥) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
7258, 49, 71syl2anc 587 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
73 nnre 11695 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7473ad2antrr 725 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℝ)
75 nnre 11695 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
7675ad2antrl 727 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℝ)
77 nngt0 11719 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 0 < 𝑁)
7877ad2antrr 725 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑁)
79 nngt0 11719 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 0 < 𝑥)
8079ad2antrl 727 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑥)
8174, 76, 78, 80divgt0d 11627 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < (𝑁 / 𝑥))
82 elnnz 12044 . . . . . . . . . . . 12 ((𝑁 / 𝑥) ∈ ℕ ↔ ((𝑁 / 𝑥) ∈ ℤ ∧ 0 < (𝑁 / 𝑥)))
8349, 81, 82sylanbrc 586 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℕ)
84 dvdsle 15725 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 / 𝑥) ∈ ℕ) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
8546, 83, 84syl2anc 587 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
86 1red 10694 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 1 ∈ ℝ)
87 0lt1 11214 . . . . . . . . . . . . 13 0 < 1
8887a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 1)
89 lediv2 11582 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
9076, 80, 86, 88, 74, 78, 89syl222anc 1384 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
91 nnle1eq1 11718 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9291ad2antrl 727 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9330div1d 11460 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 1) = 𝑁)
9493breq1d 5047 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 1) ≤ (𝑁 / 𝑥) ↔ 𝑁 ≤ (𝑁 / 𝑥)))
9590, 92, 943bitr3rd 313 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ≤ (𝑁 / 𝑥) ↔ 𝑥 = 1))
9685, 95sylibd 242 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑥 = 1))
9772, 96sylbid 243 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) → 𝑥 = 1))
9823, 40, 59zndvds0 20333 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
9958, 45, 98syl2anc 587 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
100 nnnn0 11955 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
101100ad2antrl 727 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℕ0)
102 dvdseq 15729 . . . . . . . . . . 11 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑥𝑁𝑁𝑥)) → 𝑥 = 𝑁)
103102expr 460 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑥𝑁) → (𝑁𝑥𝑥 = 𝑁))
104101, 58, 43, 103syl21anc 836 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁𝑥𝑥 = 𝑁))
10599, 104sylbid 243 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) → 𝑥 = 𝑁))
10697, 105orim12d 962 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)) → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
10770, 106mpd 15 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 = 1 ∨ 𝑥 = 𝑁))
108107expr 460 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ 𝑥 ∈ ℕ) → (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
109108ralrimiva 3114 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
110 isprm2 16093 . . . 4 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))))
11128, 109, 110sylanbrc 586 . . 3 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℙ)
112111ex 416 . 2 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn → 𝑁 ∈ ℙ))
11323znfld 20343 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
114 fldidom 20161 . . 3 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
115113, 114syl 17 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
116112, 115impbid1 228 1 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1539  wcel 2112  wne 2952  wral 3071  Vcvv 3410  c0 4228  {csn 4526  {cpr 4528   class class class wbr 5037  wf 6337  cfv 6341  (class class class)co 7157  2oc2o 8113  cdom 8539  Fincfn 8541  cc 10587  cr 10588  0cc0 10589  1c1 10590   · cmul 10594   < clt 10727  cle 10728   / cdiv 11349  cn 11688  2c2 11743  0cn0 11948  cz 12034  cuz 12296  chash 13754  cdvds 15669  cprime 16082  Basecbs 16556  .rcmulr 16639  0gc0g 16786  Ringcrg 19380  CRingccrg 19381   RingHom crh 19550  Fieldcfield 19586  NzRingcnzr 20113  Domncdomn 20136  IDomncidom 20137  ringzring 20253  ℤRHomczrh 20284  ℤ/nczn 20287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668  ax-mulf 10669
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-tpos 7909  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-oadd 8123  df-er 8306  df-ec 8308  df-qs 8312  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-dju 9377  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-5 11754  df-6 11755  df-7 11756  df-8 11757  df-9 11758  df-n0 11949  df-xnn0 12021  df-z 12035  df-dec 12152  df-uz 12297  df-rp 12445  df-fz 12954  df-fzo 13097  df-fl 13225  df-mod 13301  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-dvds 15670  df-gcd 15908  df-prm 16083  df-struct 16558  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-mulr 16652  df-starv 16653  df-sca 16654  df-vsca 16655  df-ip 16656  df-tset 16657  df-ple 16658  df-ds 16660  df-unif 16661  df-0g 16788  df-imas 16854  df-qus 16855  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-mhm 18037  df-grp 18187  df-minusg 18188  df-sbg 18189  df-mulg 18307  df-subg 18358  df-nsg 18359  df-eqg 18360  df-ghm 18438  df-cmn 18990  df-abl 18991  df-mgp 19323  df-ur 19335  df-ring 19382  df-cring 19383  df-oppr 19459  df-dvdsr 19477  df-unit 19478  df-invr 19508  df-rnghom 19553  df-drng 19587  df-field 19588  df-subrg 19616  df-lmod 19719  df-lss 19787  df-lsp 19827  df-sra 20027  df-rgmod 20028  df-lidl 20029  df-rsp 20030  df-2idl 20088  df-nzr 20114  df-rlreg 20139  df-domn 20140  df-idom 20141  df-cnfld 20182  df-zring 20254  df-zrh 20288  df-zn 20291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator