Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossex Structured version   Visualization version   GIF version

Theorem cossex 36568
Description: If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
cossex (𝐴𝑉 → ≀ 𝐴 ∈ V)

Proof of Theorem cossex
StepHypRef Expression
1 dfcoss3 36566 . 2 𝐴 = (𝐴𝐴)
2 cnvexg 7791 . . 3 (𝐴𝑉𝐴 ∈ V)
3 coexg 7796 . . 3 ((𝐴𝑉𝐴 ∈ V) → (𝐴𝐴) ∈ V)
42, 3mpdan 683 . 2 (𝐴𝑉 → (𝐴𝐴) ∈ V)
51, 4eqeltrid 2838 1 (𝐴𝑉 → ≀ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2101  Vcvv 3434  ccnv 5590  ccom 5595  ccoss 36361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-coss 36563
This theorem is referenced by:  cosscnvex  36569  1cosscnvepresex  36570  1cossxrncnvepresex  36571  cosselrels  36640  elfunsALTVfunALTV  36834
  Copyright terms: Public domain W3C validator