| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cossex | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| cossex | ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss3 38432 | . 2 ⊢ ≀ 𝐴 = (𝐴 ∘ ◡𝐴) | |
| 2 | cnvexg 7920 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
| 3 | coexg 7925 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ◡𝐴 ∈ V) → (𝐴 ∘ ◡𝐴) ∈ V) | |
| 4 | 2, 3 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∘ ◡𝐴) ∈ V) |
| 5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ◡ccnv 5653 ∘ ccom 5658 ≀ ccoss 38199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-coss 38429 |
| This theorem is referenced by: cosscnvex 38438 1cosscnvepresex 38439 1cossxrncnvepresex 38440 cosselrels 38514 elfunsALTVfunALTV 38715 partimeq 38827 |
| Copyright terms: Public domain | W3C validator |