Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossex Structured version   Visualization version   GIF version

Theorem cossex 38437
Description: If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
cossex (𝐴𝑉 → ≀ 𝐴 ∈ V)

Proof of Theorem cossex
StepHypRef Expression
1 dfcoss3 38432 . 2 𝐴 = (𝐴𝐴)
2 cnvexg 7920 . . 3 (𝐴𝑉𝐴 ∈ V)
3 coexg 7925 . . 3 ((𝐴𝑉𝐴 ∈ V) → (𝐴𝐴) ∈ V)
42, 3mpdan 687 . 2 (𝐴𝑉 → (𝐴𝐴) ∈ V)
51, 4eqeltrid 2838 1 (𝐴𝑉 → ≀ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  ccnv 5653  ccom 5658  ccoss 38199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-coss 38429
This theorem is referenced by:  cosscnvex  38438  1cosscnvepresex  38439  1cossxrncnvepresex  38440  cosselrels  38514  elfunsALTVfunALTV  38715  partimeq  38827
  Copyright terms: Public domain W3C validator