Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossex | Structured version Visualization version GIF version |
Description: If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
Ref | Expression |
---|---|
cossex | ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss3 36566 | . 2 ⊢ ≀ 𝐴 = (𝐴 ∘ ◡𝐴) | |
2 | cnvexg 7791 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
3 | coexg 7796 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ◡𝐴 ∈ V) → (𝐴 ∘ ◡𝐴) ∈ V) | |
4 | 2, 3 | mpdan 683 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∘ ◡𝐴) ∈ V) |
5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 Vcvv 3434 ◡ccnv 5590 ∘ ccom 5595 ≀ ccoss 36361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-coss 36563 |
This theorem is referenced by: cosscnvex 36569 1cosscnvepresex 36570 1cossxrncnvepresex 36571 cosselrels 36640 elfunsALTVfunALTV 36834 |
Copyright terms: Public domain | W3C validator |