Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossex Structured version   Visualization version   GIF version

Theorem cossex 38527
Description: If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
cossex (𝐴𝑉 → ≀ 𝐴 ∈ V)

Proof of Theorem cossex
StepHypRef Expression
1 dfcoss3 38522 . 2 𝐴 = (𝐴𝐴)
2 cnvexg 7860 . . 3 (𝐴𝑉𝐴 ∈ V)
3 coexg 7865 . . 3 ((𝐴𝑉𝐴 ∈ V) → (𝐴𝐴) ∈ V)
42, 3mpdan 687 . 2 (𝐴𝑉 → (𝐴𝐴) ∈ V)
51, 4eqeltrid 2835 1 (𝐴𝑉 → ≀ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  ccnv 5618  ccom 5623  ccoss 38228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-coss 38519
This theorem is referenced by:  cosscnvex  38528  1cosscnvepresex  38529  1cossxrncnvepresex  38530  cosselrels  38593  elfunsALTVfunALTV  38801  partimeq  38913
  Copyright terms: Public domain W3C validator