Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossex Structured version   Visualization version   GIF version

Theorem cossex 36469
Description: If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
cossex (𝐴𝑉 → ≀ 𝐴 ∈ V)

Proof of Theorem cossex
StepHypRef Expression
1 dfcoss3 36467 . 2 𝐴 = (𝐴𝐴)
2 cnvexg 7745 . . 3 (𝐴𝑉𝐴 ∈ V)
3 coexg 7750 . . 3 ((𝐴𝑉𝐴 ∈ V) → (𝐴𝐴) ∈ V)
42, 3mpdan 683 . 2 (𝐴𝑉 → (𝐴𝐴) ∈ V)
51, 4eqeltrid 2843 1 (𝐴𝑉 → ≀ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  ccnv 5579  ccom 5584  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-coss 36464
This theorem is referenced by:  cosscnvex  36470  1cosscnvepresex  36471  1cossxrncnvepresex  36472  cosselrels  36541  elfunsALTVfunALTV  36735
  Copyright terms: Public domain W3C validator