![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecdmn0 | Structured version Visualization version GIF version |
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecdmn0 | ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → 𝐴 ∈ V) | |
2 | n0 4345 | . . 3 ⊢ ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) | |
3 | ecexr 8704 | . . . 4 ⊢ (𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) | |
4 | 3 | exlimiv 1933 | . . 3 ⊢ (∃𝑥 𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) |
5 | 2, 4 | sylbi 216 | . 2 ⊢ ([𝐴]𝑅 ≠ ∅ → 𝐴 ∈ V) |
6 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | elecg 8742 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
8 | 6, 7 | mpan 688 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
9 | 8 | exbidv 1924 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
10 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)) |
11 | eldmg 5896 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
12 | 9, 10, 11 | 3bitr4rd 311 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)) |
13 | 1, 5, 12 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4321 class class class wbr 5147 dom cdm 5675 [cec 8697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8701 |
This theorem is referenced by: ereldm 8747 elqsn0 8776 ecelqsdm 8777 eceqoveq 8812 divsfval 17489 sylow1lem5 19464 vitalilem2 25117 vitalilem3 25118 dfdm6 37158 dmecd 37161 n0elqs 37183 |
Copyright terms: Public domain | W3C validator |