Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecdmn0 | Structured version Visualization version GIF version |
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecdmn0 | ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3418 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → 𝐴 ∈ V) | |
2 | n0 4245 | . . 3 ⊢ ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) | |
3 | ecexr 8338 | . . . 4 ⊢ (𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) | |
4 | 3 | exlimiv 1937 | . . 3 ⊢ (∃𝑥 𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) |
5 | 2, 4 | sylbi 220 | . 2 ⊢ ([𝐴]𝑅 ≠ ∅ → 𝐴 ∈ V) |
6 | vex 3404 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | elecg 8376 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
9 | 8 | exbidv 1928 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
10 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)) |
11 | eldmg 5751 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
12 | 9, 10, 11 | 3bitr4rd 315 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)) |
13 | 1, 5, 12 | pm5.21nii 383 | 1 ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∃wex 1786 ∈ wcel 2114 ≠ wne 2935 Vcvv 3400 ∅c0 4221 class class class wbr 5040 dom cdm 5535 [cec 8331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-br 5041 df-opab 5103 df-xp 5541 df-cnv 5543 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-ec 8335 |
This theorem is referenced by: ereldm 8381 elqsn0 8410 ecelqsdm 8411 eceqoveq 8446 divsfval 16936 sylow1lem5 18858 vitalilem2 24374 vitalilem3 24375 dfdm6 36093 dmecd 36096 n0elqs 36117 |
Copyright terms: Public domain | W3C validator |