| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecdmn0 | Structured version Visualization version GIF version | ||
| Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecdmn0 | ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → 𝐴 ∈ V) | |
| 2 | n0 4303 | . . 3 ⊢ ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) | |
| 3 | ecexr 8627 | . . . 4 ⊢ (𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) | |
| 4 | 3 | exlimiv 1931 | . . 3 ⊢ (∃𝑥 𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) |
| 5 | 2, 4 | sylbi 217 | . 2 ⊢ ([𝐴]𝑅 ≠ ∅ → 𝐴 ∈ V) |
| 6 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | elecg 8666 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
| 8 | 6, 7 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
| 9 | 8 | exbidv 1922 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 10 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)) |
| 11 | eldmg 5838 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 12 | 9, 10, 11 | 3bitr4rd 312 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)) |
| 13 | 1, 5, 12 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4283 class class class wbr 5091 dom cdm 5616 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 |
| This theorem is referenced by: ereldm 8675 elqsn0 8708 ecelqsdm 8709 eceqoveq 8746 divsfval 17448 sylow1lem5 19512 vitalilem2 25535 vitalilem3 25536 dfdm6 38334 dmecd 38337 n0elqs 38359 |
| Copyright terms: Public domain | W3C validator |