Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecdmn0 | Structured version Visualization version GIF version |
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecdmn0 | ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → 𝐴 ∈ V) | |
2 | n0 4277 | . . 3 ⊢ ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅) | |
3 | ecexr 8461 | . . . 4 ⊢ (𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) | |
4 | 3 | exlimiv 1934 | . . 3 ⊢ (∃𝑥 𝑥 ∈ [𝐴]𝑅 → 𝐴 ∈ V) |
5 | 2, 4 | sylbi 216 | . 2 ⊢ ([𝐴]𝑅 ≠ ∅ → 𝐴 ∈ V) |
6 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | elecg 8499 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
8 | 6, 7 | mpan 686 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
9 | 8 | exbidv 1925 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
10 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)) |
11 | eldmg 5796 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
12 | 9, 10, 11 | 3bitr4rd 311 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)) |
13 | 1, 5, 12 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 dom cdm 5580 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: ereldm 8504 elqsn0 8533 ecelqsdm 8534 eceqoveq 8569 divsfval 17175 sylow1lem5 19122 vitalilem2 24678 vitalilem3 24679 dfdm6 36364 dmecd 36367 n0elqs 36388 |
Copyright terms: Public domain | W3C validator |