MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecdmn0 Structured version   Visualization version   GIF version

Theorem ecdmn0 8794
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecdmn0 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)

Proof of Theorem ecdmn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3501 . 2 (𝐴 ∈ dom 𝑅𝐴 ∈ V)
2 n0 4353 . . 3 ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
3 ecexr 8750 . . . 4 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
43exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
52, 4sylbi 217 . 2 ([𝐴]𝑅 ≠ ∅ → 𝐴 ∈ V)
6 vex 3484 . . . . 5 𝑥 ∈ V
7 elecg 8789 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
86, 7mpan 690 . . . 4 (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
98exbidv 1921 . . 3 (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
102a1i 11 . . 3 (𝐴 ∈ V → ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅))
11 eldmg 5909 . . 3 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
129, 10, 113bitr4rd 312 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅))
131, 5, 12pm5.21nii 378 1 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2108  wne 2940  Vcvv 3480  c0 4333   class class class wbr 5143  dom cdm 5685  [cec 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747
This theorem is referenced by:  ereldm  8795  elqsn0  8826  ecelqsdm  8827  eceqoveq  8862  divsfval  17592  sylow1lem5  19620  vitalilem2  25644  vitalilem3  25645  dfdm6  38302  dmecd  38305  n0elqs  38327
  Copyright terms: Public domain W3C validator