MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecdmn0 Structured version   Visualization version   GIF version

Theorem ecdmn0 8726
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecdmn0 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)

Proof of Theorem ecdmn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐴 ∈ dom 𝑅𝐴 ∈ V)
2 n0 4319 . . 3 ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
3 ecexr 8679 . . . 4 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
43exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
52, 4sylbi 217 . 2 ([𝐴]𝑅 ≠ ∅ → 𝐴 ∈ V)
6 vex 3454 . . . . 5 𝑥 ∈ V
7 elecg 8718 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
86, 7mpan 690 . . . 4 (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
98exbidv 1921 . . 3 (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
102a1i 11 . . 3 (𝐴 ∈ V → ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅))
11 eldmg 5865 . . 3 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
129, 10, 113bitr4rd 312 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅))
131, 5, 12pm5.21nii 378 1 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2109  wne 2926  Vcvv 3450  c0 4299   class class class wbr 5110  dom cdm 5641  [cec 8672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676
This theorem is referenced by:  ereldm  8727  elqsn0  8760  ecelqsdm  8761  eceqoveq  8798  divsfval  17517  sylow1lem5  19539  vitalilem2  25517  vitalilem3  25518  dfdm6  38296  dmecd  38299  n0elqs  38321
  Copyright terms: Public domain W3C validator