![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtr3i 2765 | . 2 ⊢ 𝐵 = 𝐶 |
5 | 1, 4 | eqtr3i 2765 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: indif2 4287 dfif5 4547 resdm2 6253 co01 6283 funiunfv 7268 dfdom2 9017 1mhlfehlf 12483 crreczi 14264 rei 15192 bpoly3 16091 bpoly4 16092 cos1bnd 16220 rpnnen2lem3 16249 rpnnen2lem11 16257 m1bits 16474 6gcd4e2 16572 3lcm2e6 16766 karatsuba 17118 ring1 20324 sincos4thpi 26570 sincos6thpi 26573 1cubrlem 26899 cht3 27231 bclbnd 27339 bposlem8 27350 ex-ind-dvds 30490 ip1ilem 30855 mdexchi 32364 disjxpin 32608 xppreima 32662 df1stres 32719 df2ndres 32720 dpmul100 32864 0dp2dp 32876 dpmul 32880 dpmul4 32881 xrge0slmod 33356 cnrrext 33973 ballotth 34519 hgt750lemd 34642 poimirlem3 37610 poimirlem30 37637 mbfposadd 37654 asindmre 37690 refrelsredund4 38614 420gcd8e4 41988 sqmid3api 42297 areaquad 43205 inductionexd 44145 stoweidlem26 45982 3exp4mod41 47541 |
Copyright terms: Public domain | W3C validator |