| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2754 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2754 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif2 4240 dfif5 4501 resdm2 6192 co01 6222 funiunfv 7204 dfdom2 8926 crreczi 14169 rei 15098 bpoly3 16000 bpoly4 16001 cos1bnd 16131 rpnnen2lem3 16160 rpnnen2lem11 16168 m1bits 16386 6gcd4e2 16484 3lcm2e6 16678 karatsuba 17030 ring1 20230 sincos4thpi 26455 sincos6thpi 26458 1cubrlem 26784 cht3 27116 bclbnd 27224 bposlem8 27235 ex-ind-dvds 30440 ip1ilem 30805 mdexchi 32314 disjxpin 32567 xppreima 32619 df1stres 32677 df2ndres 32678 dpmul100 32867 0dp2dp 32879 dpmul 32883 dpmul4 32884 xrge0slmod 33312 cos9thpiminplylem5 33769 cnrrext 33993 ballotth 34522 hgt750lemd 34632 poimirlem3 37610 poimirlem30 37637 mbfposadd 37654 asindmre 37690 refrelsredund4 38616 420gcd8e4 41987 sqmid3api 42264 areaquad 43198 inductionexd 44137 stoweidlem26 46017 3exp4mod41 47610 tposresg 48859 |
| Copyright terms: Public domain | W3C validator |