| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2754 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2754 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif2 4240 dfif5 4501 resdm2 6192 co01 6222 funiunfv 7204 dfdom2 8926 crreczi 14169 rei 15098 bpoly3 16000 bpoly4 16001 cos1bnd 16131 rpnnen2lem3 16160 rpnnen2lem11 16168 m1bits 16386 6gcd4e2 16484 3lcm2e6 16678 karatsuba 17030 ring1 20195 sincos4thpi 26398 sincos6thpi 26401 1cubrlem 26727 cht3 27059 bclbnd 27167 bposlem8 27178 ex-ind-dvds 30363 ip1ilem 30728 mdexchi 32237 disjxpin 32490 xppreima 32542 df1stres 32600 df2ndres 32601 dpmul100 32790 0dp2dp 32802 dpmul 32806 dpmul4 32807 xrge0slmod 33292 cos9thpiminplylem5 33749 cnrrext 33973 ballotth 34502 hgt750lemd 34612 poimirlem3 37590 poimirlem30 37617 mbfposadd 37634 asindmre 37670 refrelsredund4 38596 420gcd8e4 41967 sqmid3api 42244 areaquad 43178 inductionexd 44117 stoweidlem26 45997 3exp4mod41 47590 tposresg 48839 |
| Copyright terms: Public domain | W3C validator |