| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2754 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2754 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif2 4232 dfif5 4493 resdm2 6180 co01 6210 funiunfv 7184 dfdom2 8903 crreczi 14135 rei 15063 bpoly3 15965 bpoly4 15966 cos1bnd 16096 rpnnen2lem3 16125 rpnnen2lem11 16133 m1bits 16351 6gcd4e2 16449 3lcm2e6 16643 karatsuba 16995 ring1 20195 sincos4thpi 26420 sincos6thpi 26423 1cubrlem 26749 cht3 27081 bclbnd 27189 bposlem8 27200 ex-ind-dvds 30405 ip1ilem 30770 mdexchi 32279 disjxpin 32532 xppreima 32588 df1stres 32646 df2ndres 32647 dpmul100 32837 0dp2dp 32849 dpmul 32853 dpmul4 32854 xrge0slmod 33285 cos9thpiminplylem5 33753 cnrrext 33977 ballotth 34506 hgt750lemd 34616 poimirlem3 37603 poimirlem30 37630 mbfposadd 37647 asindmre 37683 refrelsredund4 38609 420gcd8e4 41979 sqmid3api 42256 areaquad 43189 inductionexd 44128 stoweidlem26 46007 3exp4mod41 47600 tposresg 48862 |
| Copyright terms: Public domain | W3C validator |