| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2756 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2756 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: indif2 4228 dfif5 4489 resdm2 6178 co01 6209 funiunfv 7182 dfdom2 8900 crreczi 14135 rei 15063 bpoly3 15965 bpoly4 15966 cos1bnd 16096 rpnnen2lem3 16125 rpnnen2lem11 16133 m1bits 16351 6gcd4e2 16449 3lcm2e6 16643 karatsuba 16995 ring1 20228 sincos4thpi 26449 sincos6thpi 26452 1cubrlem 26778 cht3 27110 bclbnd 27218 bposlem8 27229 ex-ind-dvds 30441 ip1ilem 30806 mdexchi 32315 disjxpin 32568 xppreima 32627 df1stres 32685 df2ndres 32686 dpmul100 32877 0dp2dp 32889 dpmul 32893 dpmul4 32894 xrge0slmod 33313 cos9thpiminplylem5 33799 cnrrext 34023 ballotth 34551 hgt750lemd 34661 poimirlem3 37671 poimirlem30 37698 mbfposadd 37715 asindmre 37751 refrelsredund4 38677 420gcd8e4 42047 sqmid3api 42324 areaquad 43257 inductionexd 44196 stoweidlem26 46072 3exp4mod41 47655 tposresg 48917 |
| Copyright terms: Public domain | W3C validator |