| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2755 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2755 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: indif2 4247 dfif5 4508 resdm2 6207 co01 6237 funiunfv 7225 dfdom2 8952 crreczi 14200 rei 15129 bpoly3 16031 bpoly4 16032 cos1bnd 16162 rpnnen2lem3 16191 rpnnen2lem11 16199 m1bits 16417 6gcd4e2 16515 3lcm2e6 16709 karatsuba 17061 ring1 20226 sincos4thpi 26429 sincos6thpi 26432 1cubrlem 26758 cht3 27090 bclbnd 27198 bposlem8 27209 ex-ind-dvds 30397 ip1ilem 30762 mdexchi 32271 disjxpin 32524 xppreima 32576 df1stres 32634 df2ndres 32635 dpmul100 32824 0dp2dp 32836 dpmul 32840 dpmul4 32841 xrge0slmod 33326 cos9thpiminplylem5 33783 cnrrext 34007 ballotth 34536 hgt750lemd 34646 poimirlem3 37624 poimirlem30 37651 mbfposadd 37668 asindmre 37704 refrelsredund4 38630 420gcd8e4 42001 sqmid3api 42278 areaquad 43212 inductionexd 44151 stoweidlem26 46031 3exp4mod41 47621 tposresg 48870 |
| Copyright terms: Public domain | W3C validator |