Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtr3i 2768 | . 2 ⊢ 𝐵 = 𝐶 |
5 | 1, 4 | eqtr3i 2768 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: indif2 4204 dfif5 4475 resdm2 6134 co01 6165 funiunfv 7121 dfdom2 8766 1mhlfehlf 12192 crreczi 13943 rei 14867 bpoly3 15768 bpoly4 15769 cos1bnd 15896 rpnnen2lem3 15925 rpnnen2lem11 15933 m1bits 16147 6gcd4e2 16246 3lcm2e6 16436 karatsuba 16785 ring1 19841 sincos4thpi 25670 sincos6thpi 25672 1cubrlem 25991 cht3 26322 bclbnd 26428 bposlem8 26439 ex-ind-dvds 28825 ip1ilem 29188 mdexchi 30697 disjxpin 30927 xppreima 30983 df1stres 31036 df2ndres 31037 dpmul100 31171 0dp2dp 31183 dpmul 31187 dpmul4 31188 xrge0slmod 31548 cnrrext 31960 ballotth 32504 hgt750lemd 32628 poimirlem3 35780 poimirlem30 35807 mbfposadd 35824 asindmre 35860 refrelsredund4 36745 420gcd8e4 40014 sqmid3api 40311 areaquad 41047 inductionexd 41765 stoweidlem26 43567 3exp4mod41 45068 |
Copyright terms: Public domain | W3C validator |