| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2760 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2760 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: indif2 4256 dfif5 4517 resdm2 6220 co01 6250 funiunfv 7240 dfdom2 8992 crreczi 14246 rei 15175 bpoly3 16074 bpoly4 16075 cos1bnd 16205 rpnnen2lem3 16234 rpnnen2lem11 16242 m1bits 16459 6gcd4e2 16557 3lcm2e6 16751 karatsuba 17103 ring1 20270 sincos4thpi 26474 sincos6thpi 26477 1cubrlem 26803 cht3 27135 bclbnd 27243 bposlem8 27254 ex-ind-dvds 30442 ip1ilem 30807 mdexchi 32316 disjxpin 32569 xppreima 32623 df1stres 32681 df2ndres 32682 dpmul100 32871 0dp2dp 32883 dpmul 32887 dpmul4 32888 xrge0slmod 33363 cos9thpiminplylem5 33820 cnrrext 34041 ballotth 34570 hgt750lemd 34680 poimirlem3 37647 poimirlem30 37674 mbfposadd 37691 asindmre 37727 refrelsredund4 38650 420gcd8e4 42019 sqmid3api 42333 areaquad 43240 inductionexd 44179 stoweidlem26 46055 3exp4mod41 47630 tposresg 48853 |
| Copyright terms: Public domain | W3C validator |