Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtr3i 2768 | . 2 ⊢ 𝐵 = 𝐶 |
5 | 1, 4 | eqtr3i 2768 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: indif2 4201 dfif5 4472 resdm2 6123 co01 6154 funiunfv 7103 dfdom2 8721 1mhlfehlf 12122 crreczi 13871 rei 14795 bpoly3 15696 bpoly4 15697 cos1bnd 15824 rpnnen2lem3 15853 rpnnen2lem11 15861 m1bits 16075 6gcd4e2 16174 3lcm2e6 16364 karatsuba 16713 ring1 19756 sincos4thpi 25575 sincos6thpi 25577 1cubrlem 25896 cht3 26227 bclbnd 26333 bposlem8 26344 ex-ind-dvds 28726 ip1ilem 29089 mdexchi 30598 disjxpin 30828 xppreima 30884 df1stres 30938 df2ndres 30939 dpmul100 31073 0dp2dp 31085 dpmul 31089 dpmul4 31090 xrge0slmod 31450 cnrrext 31860 ballotth 32404 hgt750lemd 32528 poimirlem3 35707 poimirlem30 35734 mbfposadd 35751 asindmre 35787 refrelsredund4 36672 420gcd8e4 39942 sqmid3api 40232 areaquad 40963 inductionexd 41654 stoweidlem26 43457 3exp4mod41 44956 |
Copyright terms: Public domain | W3C validator |