| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2754 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2754 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif2 4244 dfif5 4505 resdm2 6204 co01 6234 funiunfv 7222 dfdom2 8949 crreczi 14193 rei 15122 bpoly3 16024 bpoly4 16025 cos1bnd 16155 rpnnen2lem3 16184 rpnnen2lem11 16192 m1bits 16410 6gcd4e2 16508 3lcm2e6 16702 karatsuba 17054 ring1 20219 sincos4thpi 26422 sincos6thpi 26425 1cubrlem 26751 cht3 27083 bclbnd 27191 bposlem8 27202 ex-ind-dvds 30390 ip1ilem 30755 mdexchi 32264 disjxpin 32517 xppreima 32569 df1stres 32627 df2ndres 32628 dpmul100 32817 0dp2dp 32829 dpmul 32833 dpmul4 32834 xrge0slmod 33319 cos9thpiminplylem5 33776 cnrrext 34000 ballotth 34529 hgt750lemd 34639 poimirlem3 37617 poimirlem30 37644 mbfposadd 37661 asindmre 37697 refrelsredund4 38623 420gcd8e4 41994 sqmid3api 42271 areaquad 43205 inductionexd 44144 stoweidlem26 46024 3exp4mod41 47617 tposresg 48866 |
| Copyright terms: Public domain | W3C validator |