![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr3ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtr3i 2770 | . 2 ⊢ 𝐵 = 𝐶 |
5 | 1, 4 | eqtr3i 2770 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: indif2 4300 dfif5 4564 resdm2 6262 co01 6292 funiunfv 7285 dfdom2 9038 1mhlfehlf 12512 crreczi 14277 rei 15205 bpoly3 16106 bpoly4 16107 cos1bnd 16235 rpnnen2lem3 16264 rpnnen2lem11 16272 m1bits 16486 6gcd4e2 16585 3lcm2e6 16779 karatsuba 17131 ring1 20333 sincos4thpi 26573 sincos6thpi 26576 1cubrlem 26902 cht3 27234 bclbnd 27342 bposlem8 27353 ex-ind-dvds 30493 ip1ilem 30858 mdexchi 32367 disjxpin 32610 xppreima 32664 df1stres 32715 df2ndres 32716 dpmul100 32861 0dp2dp 32873 dpmul 32877 dpmul4 32878 xrge0slmod 33341 cnrrext 33956 ballotth 34502 hgt750lemd 34625 poimirlem3 37583 poimirlem30 37610 mbfposadd 37627 asindmre 37663 refrelsredund4 38588 420gcd8e4 41963 sqmid3api 42272 areaquad 43177 inductionexd 44117 stoweidlem26 45947 3exp4mod41 47490 |
Copyright terms: Public domain | W3C validator |