MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom2 Structured version   Visualization version   GIF version

Theorem brdom2 8223
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
brdom2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))

Proof of Theorem brdom2
StepHypRef Expression
1 dfdom2 8219 . . 3 ≼ = ( ≺ ∪ ≈ )
21eleq2i 2868 . 2 (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
3 df-br 4842 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
4 df-br 4842 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
5 df-br 4842 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ )
64, 5orbi12i 939 . . 3 ((𝐴𝐵𝐴𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
7 elun 3949 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
86, 7bitr4i 270 . 2 ((𝐴𝐵𝐴𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
92, 3, 83bitr4i 295 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wo 874  wcel 2157  cun 3765  cop 4372   class class class wbr 4841  cen 8190  cdom 8191  csdm 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pr 5095
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rab 3096  df-v 3385  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-sn 4367  df-pr 4369  df-op 4373  df-br 4842  df-opab 4904  df-xp 5316  df-rel 5317  df-f1o 6106  df-en 8194  df-dom 8195  df-sdom 8196
This theorem is referenced by:  bren2  8224  domnsym  8326  modom  8401  carddom2  9087  axcc4dom  9549  entric  9665  entri2  9666  gchor  9735  frgpcyg  20240  iunmbl2  23662  dyadmbl  23705  padct  30007  volmeas  30802  ovoliunnfl  33932  ctbnfien  38156
  Copyright terms: Public domain W3C validator