| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdom2 | Structured version Visualization version GIF version | ||
| Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
| Ref | Expression |
|---|---|
| brdom2 | ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdom2 8903 | . . 3 ⊢ ≼ = ( ≺ ∪ ≈ ) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≼ ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
| 3 | df-br 5093 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
| 4 | df-br 5093 | . . . 4 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
| 5 | df-br 5093 | . . . 4 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
| 6 | 4, 5 | orbi12i 914 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) |
| 7 | elun 4104 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
| 9 | 2, 3, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∈ wcel 2109 ∪ cun 3901 〈cop 4583 class class class wbr 5092 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-f1o 6489 df-en 8873 df-dom 8874 df-sdom 8875 |
| This theorem is referenced by: bren2 8908 domnsym 9020 domnsymfi 9114 modom 9140 carddom2 9873 axcc4dom 10335 entric 10451 entri2 10452 gchor 10521 frgpcyg 21480 iunmbl2 25456 dyadmbl 25499 padct 32662 volmeas 34198 ovoliunnfl 37646 ctbnfien 42795 |
| Copyright terms: Public domain | W3C validator |