![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdom2 | Structured version Visualization version GIF version |
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
brdom2 | ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdom2 8976 | . . 3 ⊢ ≼ = ( ≺ ∪ ≈ ) | |
2 | 1 | eleq2i 2823 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ )) |
3 | df-br 5148 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ ) | |
4 | df-br 5148 | . . . 4 ⊢ (𝐴 ≺ 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ ) | |
5 | df-br 5148 | . . . 4 ⊢ (𝐴 ≈ 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ ) | |
6 | 4, 5 | orbi12i 911 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ )) |
7 | elun 4147 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ )) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ )) |
9 | 2, 3, 8 | 3bitr4i 302 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ∈ wcel 2104 ∪ cun 3945 ⟨cop 4633 class class class wbr 5147 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-f1o 6549 df-en 8942 df-dom 8943 df-sdom 8944 |
This theorem is referenced by: bren2 8981 domnsym 9101 domnsymfi 9205 modom 9246 carddom2 9974 axcc4dom 10438 entric 10554 entri2 10555 gchor 10624 frgpcyg 21348 iunmbl2 25306 dyadmbl 25349 padct 32211 volmeas 33527 ovoliunnfl 36833 ctbnfien 41858 |
Copyright terms: Public domain | W3C validator |