MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom2 Structured version   Visualization version   GIF version

Theorem brdom2 8953
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
brdom2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))

Proof of Theorem brdom2
StepHypRef Expression
1 dfdom2 8949 . . 3 ≼ = ( ≺ ∪ ≈ )
21eleq2i 2820 . 2 (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
3 df-br 5108 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
4 df-br 5108 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
5 df-br 5108 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ )
64, 5orbi12i 914 . . 3 ((𝐴𝐵𝐴𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
7 elun 4116 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
86, 7bitr4i 278 . 2 ((𝐴𝐵𝐴𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
92, 3, 83bitr4i 303 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wcel 2109  cun 3912  cop 4595   class class class wbr 5107  cen 8915  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-f1o 6518  df-en 8919  df-dom 8920  df-sdom 8921
This theorem is referenced by:  bren2  8954  domnsym  9067  domnsymfi  9164  modom  9191  carddom2  9930  axcc4dom  10394  entric  10510  entri2  10511  gchor  10580  frgpcyg  21483  iunmbl2  25458  dyadmbl  25501  padct  32643  volmeas  34221  ovoliunnfl  37656  ctbnfien  42806
  Copyright terms: Public domain W3C validator