![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdom2 | Structured version Visualization version GIF version |
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
brdom2 | ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdom2 9038 | . . 3 ⊢ ≼ = ( ≺ ∪ ≈ ) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≼ ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
3 | df-br 5167 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
4 | df-br 5167 | . . . 4 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
5 | df-br 5167 | . . . 4 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
6 | 4, 5 | orbi12i 913 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) |
7 | elun 4176 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
9 | 2, 3, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 ∈ wcel 2108 ∪ cun 3974 〈cop 4654 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-f1o 6580 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: bren2 9043 domnsym 9165 domnsymfi 9266 modom 9307 carddom2 10046 axcc4dom 10510 entric 10626 entri2 10627 gchor 10696 frgpcyg 21615 iunmbl2 25611 dyadmbl 25654 padct 32733 volmeas 34195 ovoliunnfl 37622 ctbnfien 42774 |
Copyright terms: Public domain | W3C validator |