![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brdom2 | Structured version Visualization version GIF version |
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
brdom2 | ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdom2 8219 | . . 3 ⊢ ≼ = ( ≺ ∪ ≈ ) | |
2 | 1 | eleq2i 2868 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ≼ ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
3 | df-br 4842 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≼ ) | |
4 | df-br 4842 | . . . 4 ⊢ (𝐴 ≺ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≺ ) | |
5 | df-br 4842 | . . . 4 ⊢ (𝐴 ≈ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≈ ) | |
6 | 4, 5 | orbi12i 939 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) |
7 | elun 3949 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ ) ↔ (〈𝐴, 𝐵〉 ∈ ≺ ∨ 〈𝐴, 𝐵〉 ∈ ≈ )) | |
8 | 6, 7 | bitr4i 270 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) ↔ 〈𝐴, 𝐵〉 ∈ ( ≺ ∪ ≈ )) |
9 | 2, 3, 8 | 3bitr4i 295 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 874 ∈ wcel 2157 ∪ cun 3765 〈cop 4372 class class class wbr 4841 ≈ cen 8190 ≼ cdom 8191 ≺ csdm 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 df-f1o 6106 df-en 8194 df-dom 8195 df-sdom 8196 |
This theorem is referenced by: bren2 8224 domnsym 8326 modom 8401 carddom2 9087 axcc4dom 9549 entric 9665 entri2 9666 gchor 9735 frgpcyg 20240 iunmbl2 23662 dyadmbl 23705 padct 30007 volmeas 30802 ovoliunnfl 33932 ctbnfien 38156 |
Copyright terms: Public domain | W3C validator |