MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom2 Structured version   Visualization version   GIF version

Theorem brdom2 8725
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of [Suppes] p. 97. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
brdom2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))

Proof of Theorem brdom2
StepHypRef Expression
1 dfdom2 8721 . . 3 ≼ = ( ≺ ∪ ≈ )
21eleq2i 2830 . 2 (⟨𝐴, 𝐵⟩ ∈ ≼ ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
3 df-br 5071 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≼ )
4 df-br 5071 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≺ )
5 df-br 5071 . . . 4 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≈ )
64, 5orbi12i 911 . . 3 ((𝐴𝐵𝐴𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
7 elun 4079 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ) ↔ (⟨𝐴, 𝐵⟩ ∈ ≺ ∨ ⟨𝐴, 𝐵⟩ ∈ ≈ ))
86, 7bitr4i 277 . 2 ((𝐴𝐵𝐴𝐵) ↔ ⟨𝐴, 𝐵⟩ ∈ ( ≺ ∪ ≈ ))
92, 3, 83bitr4i 302 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843  wcel 2108  cun 3881  cop 4564   class class class wbr 5070  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-f1o 6425  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  bren2  8726  domnsym  8839  modom  8953  carddom2  9666  axcc4dom  10128  entric  10244  entri2  10245  gchor  10314  frgpcyg  20693  iunmbl2  24626  dyadmbl  24669  padct  30956  volmeas  32099  ovoliunnfl  35746  ctbnfien  40556
  Copyright terms: Public domain W3C validator