| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 8989 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 5164 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5119 ≈ cen 8954 ≼ cdom 8955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-f1o 6537 df-en 8958 df-dom 8959 |
| This theorem is referenced by: bren2 8995 domrefg 8999 endomtr 9024 domentr 9025 domunsncan 9084 sbthb 9106 dom0 9114 sdomentr 9123 ensdomtr 9125 domtriord 9135 domunsn 9139 xpen 9152 sdomdomtrfi 9213 domsdomtrfi 9214 sucdom2 9215 php 9219 php3 9221 onomeneq 9235 0sdom1dom 9244 rex2dom 9252 unxpdom2 9260 sucxpdom 9261 f1finf1o 9275 findcard3 9288 fodomfi 9320 wdomen1 9588 wdomen2 9589 fidomtri2 10006 prdom2 10018 acnen 10065 acnen2 10067 alephdom 10093 alephinit 10107 undjudom 10180 pwdjudom 10227 fin1a2lem11 10422 hsmexlem1 10438 gchdomtri 10641 gchdjuidm 10680 gchxpidm 10681 gchpwdom 10682 gchhar 10691 gruina 10830 nnct 13997 odinf 19542 hauspwdom 23437 ufildom1 23862 iscmet3 25243 mbfaddlem 25611 ctbssinf 37370 pibt2 37381 heiborlem3 37783 zct 45033 qct 45337 caratheodory 46505 |
| Copyright terms: Public domain | W3C validator |