| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 8991 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 5164 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5119 ≈ cen 8956 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-f1o 6538 df-en 8960 df-dom 8961 |
| This theorem is referenced by: bren2 8997 domrefg 9001 endomtr 9026 domentr 9027 domunsncan 9086 sbthb 9108 dom0 9116 sdomentr 9125 ensdomtr 9127 domtriord 9137 domunsn 9141 xpen 9154 sdomdomtrfi 9215 domsdomtrfi 9216 sucdom2 9217 php 9221 php3 9223 onomeneq 9237 0sdom1dom 9246 rex2dom 9254 unxpdom2 9262 sucxpdom 9263 f1finf1o 9277 findcard3 9290 fodomfi 9322 wdomen1 9590 wdomen2 9591 fidomtri2 10008 prdom2 10020 acnen 10067 acnen2 10069 alephdom 10095 alephinit 10109 undjudom 10182 pwdjudom 10229 fin1a2lem11 10424 hsmexlem1 10440 gchdomtri 10643 gchdjuidm 10682 gchxpidm 10683 gchpwdom 10684 gchhar 10693 gruina 10832 nnct 13999 odinf 19544 hauspwdom 23439 ufildom1 23864 iscmet3 25245 mbfaddlem 25613 ctbssinf 37424 pibt2 37435 heiborlem3 37837 zct 45085 qct 45389 caratheodory 46557 |
| Copyright terms: Public domain | W3C validator |