Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version |
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enssdom 8765 | . 2 ⊢ ≈ ⊆ ≼ | |
2 | 1 | ssbri 5119 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-f1o 6440 df-en 8734 df-dom 8735 |
This theorem is referenced by: bren2 8771 domrefg 8775 endomtr 8798 domentr 8799 domunsncan 8859 sbthb 8881 dom0 8889 sdomentr 8898 ensdomtr 8900 domtriord 8910 domunsn 8914 xpen 8927 sdomdomtrfi 8987 domsdomtrfi 8988 sucdom2 8989 php 8993 php3 8995 onomeneq 9011 unxpdom2 9031 sucxpdom 9032 wdomen1 9335 wdomen2 9336 fidomtri2 9752 prdom2 9762 acnen 9809 acnen2 9811 alephdom 9837 alephinit 9851 undjudom 9923 pwdjudom 9972 fin1a2lem11 10166 hsmexlem1 10182 gchdomtri 10385 gchdjuidm 10424 gchxpidm 10425 gchpwdom 10426 gchhar 10435 gruina 10574 nnct 13701 odinf 19170 hauspwdom 22652 ufildom1 23077 iscmet3 24457 mbfaddlem 24824 ctbssinf 35577 pibt2 35588 heiborlem3 35971 zct 42609 qct 42901 caratheodory 44066 |
Copyright terms: Public domain | W3C validator |