Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version |
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enssdom 8720 | . 2 ⊢ ≈ ⊆ ≼ | |
2 | 1 | ssbri 5115 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-f1o 6425 df-en 8692 df-dom 8693 |
This theorem is referenced by: bren2 8726 domrefg 8730 endomtr 8753 domentr 8754 domunsncan 8812 sbthb 8834 sdomentr 8847 ensdomtr 8849 domtriord 8859 domunsn 8863 xpen 8876 unxpdom2 8960 sucxpdom 8961 wdomen1 9265 wdomen2 9266 fidomtri2 9683 prdom2 9693 acnen 9740 acnen2 9742 alephdom 9768 alephinit 9782 undjudom 9854 pwdjudom 9903 fin1a2lem11 10097 hsmexlem1 10113 gchdomtri 10316 gchdjuidm 10355 gchxpidm 10356 gchpwdom 10357 gchhar 10366 gruina 10505 nnct 13629 odinf 19085 hauspwdom 22560 ufildom1 22985 iscmet3 24362 mbfaddlem 24729 ctbssinf 35504 pibt2 35515 heiborlem3 35898 zct 42498 qct 42791 caratheodory 43956 |
Copyright terms: Public domain | W3C validator |