Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version |
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enssdom 8757 | . 2 ⊢ ≈ ⊆ ≼ | |
2 | 1 | ssbri 5124 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5079 ≈ cen 8722 ≼ cdom 8723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-f1o 6439 df-en 8726 df-dom 8727 |
This theorem is referenced by: bren2 8763 domrefg 8767 endomtr 8790 domentr 8791 domunsncan 8850 sbthb 8872 dom0 8880 sdomentr 8889 ensdomtr 8891 domtriord 8901 domunsn 8905 xpen 8918 sdomdomtrfi 8978 domsdomtrfi 8979 php 8983 php3 8985 unxpdom2 9019 sucxpdom 9020 wdomen1 9323 wdomen2 9324 fidomtri2 9763 prdom2 9773 acnen 9820 acnen2 9822 alephdom 9848 alephinit 9862 undjudom 9934 pwdjudom 9983 fin1a2lem11 10177 hsmexlem1 10193 gchdomtri 10396 gchdjuidm 10435 gchxpidm 10436 gchpwdom 10437 gchhar 10446 gruina 10585 nnct 13712 odinf 19181 hauspwdom 22663 ufildom1 23088 iscmet3 24468 mbfaddlem 24835 ctbssinf 35586 pibt2 35597 heiborlem3 35980 zct 42591 qct 42883 caratheodory 44048 |
Copyright terms: Public domain | W3C validator |