![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version |
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enssdom 9037 | . 2 ⊢ ≈ ⊆ ≼ | |
2 | 1 | ssbri 5211 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-f1o 6580 df-en 9004 df-dom 9005 |
This theorem is referenced by: bren2 9043 domrefg 9047 endomtr 9072 domentr 9073 domunsncan 9138 sbthb 9160 dom0 9168 sdomentr 9177 ensdomtr 9179 domtriord 9189 domunsn 9193 xpen 9206 sdomdomtrfi 9267 domsdomtrfi 9268 sucdom2 9269 php 9273 php3 9275 onomeneq 9291 0sdom1dom 9301 rex2dom 9309 unxpdom2 9317 sucxpdom 9318 f1finf1o 9333 findcard3 9346 fodomfi 9378 wdomen1 9645 wdomen2 9646 fidomtri2 10063 prdom2 10075 acnen 10122 acnen2 10124 alephdom 10150 alephinit 10164 undjudom 10237 pwdjudom 10284 fin1a2lem11 10479 hsmexlem1 10495 gchdomtri 10698 gchdjuidm 10737 gchxpidm 10738 gchpwdom 10739 gchhar 10748 gruina 10887 nnct 14032 odinf 19605 hauspwdom 23530 ufildom1 23955 iscmet3 25346 mbfaddlem 25714 ctbssinf 37372 pibt2 37383 heiborlem3 37773 zct 44963 qct 45277 caratheodory 46449 |
Copyright terms: Public domain | W3C validator |