| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 8951 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 5155 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5110 ≈ cen 8918 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-f1o 6521 df-en 8922 df-dom 8923 |
| This theorem is referenced by: bren2 8957 domrefg 8961 endomtr 8986 domentr 8987 domunsncan 9046 sbthb 9068 dom0 9075 sdomentr 9081 ensdomtr 9083 domtriord 9093 domunsn 9097 xpen 9110 sdomdomtrfi 9171 domsdomtrfi 9172 sucdom2 9173 php 9177 php3 9179 onomeneq 9184 0sdom1dom 9192 rex2dom 9200 unxpdom2 9208 sucxpdom 9209 f1finf1o 9223 findcard3 9236 fodomfi 9268 wdomen1 9536 wdomen2 9537 fidomtri2 9954 prdom2 9966 acnen 10013 acnen2 10015 alephdom 10041 alephinit 10055 undjudom 10128 pwdjudom 10175 fin1a2lem11 10370 hsmexlem1 10386 gchdomtri 10589 gchdjuidm 10628 gchxpidm 10629 gchpwdom 10630 gchhar 10639 gruina 10778 nnct 13953 odinf 19500 hauspwdom 23395 ufildom1 23820 iscmet3 25200 mbfaddlem 25568 ctbssinf 37401 pibt2 37412 heiborlem3 37814 zct 45062 qct 45365 caratheodory 46533 |
| Copyright terms: Public domain | W3C validator |