![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version |
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enssdom 9015 | . 2 ⊢ ≈ ⊆ ≼ | |
2 | 1 | ssbri 5192 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5147 ≈ cen 8980 ≼ cdom 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-f1o 6569 df-en 8984 df-dom 8985 |
This theorem is referenced by: bren2 9021 domrefg 9025 endomtr 9050 domentr 9051 domunsncan 9110 sbthb 9132 dom0 9140 sdomentr 9149 ensdomtr 9151 domtriord 9161 domunsn 9165 xpen 9178 sdomdomtrfi 9238 domsdomtrfi 9239 sucdom2 9240 php 9244 php3 9246 onomeneq 9262 0sdom1dom 9271 rex2dom 9279 unxpdom2 9287 sucxpdom 9288 f1finf1o 9302 findcard3 9315 fodomfi 9347 wdomen1 9613 wdomen2 9614 fidomtri2 10031 prdom2 10043 acnen 10090 acnen2 10092 alephdom 10118 alephinit 10132 undjudom 10205 pwdjudom 10252 fin1a2lem11 10447 hsmexlem1 10463 gchdomtri 10666 gchdjuidm 10705 gchxpidm 10706 gchpwdom 10707 gchhar 10716 gruina 10855 nnct 14018 odinf 19595 hauspwdom 23524 ufildom1 23949 iscmet3 25340 mbfaddlem 25708 ctbssinf 37388 pibt2 37399 heiborlem3 37799 zct 45000 qct 45311 caratheodory 46483 |
Copyright terms: Public domain | W3C validator |