| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 8902 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 5137 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5092 ≈ cen 8869 ≼ cdom 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-f1o 6489 df-en 8873 df-dom 8874 |
| This theorem is referenced by: bren2 8908 domrefg 8912 endomtr 8937 domentr 8938 domunsncan 8994 sbthb 9015 dom0 9022 sdomentr 9028 ensdomtr 9030 domtriord 9040 domunsn 9044 xpen 9057 sdomdomtrfi 9115 domsdomtrfi 9116 sucdom2 9117 php 9121 php3 9123 onomeneq 9128 0sdom1dom 9135 rex2dom 9142 unxpdom2 9149 sucxpdom 9150 f1finf1o 9162 findcard3 9172 fodomfi 9201 wdomen1 9468 wdomen2 9469 fidomtri2 9890 prdom2 9900 acnen 9947 acnen2 9949 alephdom 9975 alephinit 9989 undjudom 10062 pwdjudom 10109 fin1a2lem11 10304 hsmexlem1 10320 gchdomtri 10523 gchdjuidm 10562 gchxpidm 10563 gchpwdom 10564 gchhar 10573 gruina 10712 nnct 13888 odinf 19442 hauspwdom 23386 ufildom1 23811 iscmet3 25191 mbfaddlem 25559 ctbssinf 37390 pibt2 37401 heiborlem3 37803 zct 45049 qct 45352 caratheodory 46519 |
| Copyright terms: Public domain | W3C validator |