| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 8948 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 5152 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-f1o 6518 df-en 8919 df-dom 8920 |
| This theorem is referenced by: bren2 8954 domrefg 8958 endomtr 8983 domentr 8984 domunsncan 9041 sbthb 9062 dom0 9069 sdomentr 9075 ensdomtr 9077 domtriord 9087 domunsn 9091 xpen 9104 sdomdomtrfi 9165 domsdomtrfi 9166 sucdom2 9167 php 9171 php3 9173 onomeneq 9178 0sdom1dom 9185 rex2dom 9193 unxpdom2 9201 sucxpdom 9202 f1finf1o 9216 findcard3 9229 fodomfi 9261 wdomen1 9529 wdomen2 9530 fidomtri2 9947 prdom2 9959 acnen 10006 acnen2 10008 alephdom 10034 alephinit 10048 undjudom 10121 pwdjudom 10168 fin1a2lem11 10363 hsmexlem1 10379 gchdomtri 10582 gchdjuidm 10621 gchxpidm 10622 gchpwdom 10623 gchhar 10632 gruina 10771 nnct 13946 odinf 19493 hauspwdom 23388 ufildom1 23813 iscmet3 25193 mbfaddlem 25561 ctbssinf 37394 pibt2 37405 heiborlem3 37807 zct 45055 qct 45358 caratheodory 46526 |
| Copyright terms: Public domain | W3C validator |