| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 8925 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 5147 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-f1o 6506 df-en 8896 df-dom 8897 |
| This theorem is referenced by: bren2 8931 domrefg 8935 endomtr 8960 domentr 8961 domunsncan 9018 sbthb 9039 dom0 9046 sdomentr 9052 ensdomtr 9054 domtriord 9064 domunsn 9068 xpen 9081 sdomdomtrfi 9142 domsdomtrfi 9143 sucdom2 9144 php 9148 php3 9150 onomeneq 9155 0sdom1dom 9162 rex2dom 9169 unxpdom2 9177 sucxpdom 9178 f1finf1o 9192 findcard3 9205 fodomfi 9237 wdomen1 9505 wdomen2 9506 fidomtri2 9923 prdom2 9935 acnen 9982 acnen2 9984 alephdom 10010 alephinit 10024 undjudom 10097 pwdjudom 10144 fin1a2lem11 10339 hsmexlem1 10355 gchdomtri 10558 gchdjuidm 10597 gchxpidm 10598 gchpwdom 10599 gchhar 10608 gruina 10747 nnct 13922 odinf 19477 hauspwdom 23421 ufildom1 23846 iscmet3 25226 mbfaddlem 25594 ctbssinf 37387 pibt2 37398 heiborlem3 37800 zct 45048 qct 45351 caratheodory 46519 |
| Copyright terms: Public domain | W3C validator |