| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 8899 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 5134 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-f1o 6488 df-en 8870 df-dom 8871 |
| This theorem is referenced by: bren2 8905 domrefg 8909 endomtr 8934 domentr 8935 domunsncan 8990 sbthb 9011 dom0 9018 sdomentr 9024 ensdomtr 9026 domtriord 9036 domunsn 9040 xpen 9053 sdomdomtrfi 9110 domsdomtrfi 9111 sucdom2 9112 php 9116 php3 9118 onomeneq 9123 0sdom1dom 9130 rex2dom 9137 unxpdom2 9144 sucxpdom 9145 f1finf1o 9157 findcard3 9167 fodomfi 9196 wdomen1 9462 wdomen2 9463 fidomtri2 9887 prdom2 9897 acnen 9944 acnen2 9946 alephdom 9972 alephinit 9986 undjudom 10059 pwdjudom 10106 fin1a2lem11 10301 hsmexlem1 10317 gchdomtri 10520 gchdjuidm 10559 gchxpidm 10560 gchpwdom 10561 gchhar 10570 gruina 10709 nnct 13888 odinf 19475 hauspwdom 23416 ufildom1 23841 iscmet3 25220 mbfaddlem 25588 ctbssinf 37450 pibt2 37461 heiborlem3 37863 zct 45168 qct 45471 caratheodory 46636 |
| Copyright terms: Public domain | W3C validator |