Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege75 Structured version   Visualization version   GIF version

Theorem frege75 43962
Description: If from the proposition that 𝑥 has property 𝐴, whatever 𝑥 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then property 𝐴 is hereditary in the 𝑅-sequence. Proposition 75 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege75 (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) → 𝑅 hereditary 𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem frege75
StepHypRef Expression
1 dffrege69 43956 . 2 (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴)
2 frege52aid 43882 . 2 ((∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴) → (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) → 𝑅 hereditary 𝐴))
31, 2ax-mp 5 1 (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) → 𝑅 hereditary 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2108   class class class wbr 5119   hereditary whe 43796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-frege52a 43881
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-he 43797
This theorem is referenced by:  frege97  43984  frege109  43996  frege131  44018
  Copyright terms: Public domain W3C validator