![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege75 | Structured version Visualization version GIF version |
Description: If from the proposition that 𝑥 has property 𝐴, whatever 𝑥 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then property 𝐴 is hereditary in the 𝑅-sequence. Proposition 75 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege75 | ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → 𝑅 hereditary 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffrege69 39065 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | |
2 | frege52aid 38991 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → 𝑅 hereditary 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → 𝑅 hereditary 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1654 ∈ wcel 2164 class class class wbr 4875 hereditary whe 38905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 ax-frege52a 38990 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-ifp 1090 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-xp 5352 df-cnv 5354 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-he 38906 |
This theorem is referenced by: frege97 39093 frege109 39105 frege131 39127 |
Copyright terms: Public domain | W3C validator |