Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6544 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | dfrel4v 6098 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
4 | fnbr 6550 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
5 | 4 | ex 413 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 563 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
7 | eqcom 2746 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
8 | fnbrfvb 6831 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
9 | 7, 8 | bitrid 282 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
10 | 9 | pm5.32da 579 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | 6, 10 | bitr4d 281 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
12 | 11 | opabbidv 5141 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
13 | 3, 12 | eqtrd 2779 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
14 | df-mpt 5159 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
15 | 13, 14 | eqtr4di 2797 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
16 | fvex 6796 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
17 | eqid 2739 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
18 | 16, 17 | fnmpti 6585 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
19 | fneq1 6533 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
20 | 18, 19 | mpbiri 257 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
21 | 15, 20 | impbii 208 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 {copab 5137 ↦ cmpt 5158 Rel wrel 5595 Fn wfn 6432 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fn 6440 df-fv 6445 |
This theorem is referenced by: fnrnfv 6838 feqmptd 6846 dffn5f 6849 eqfnfv 6918 fndmin 6931 fcompt 7014 funiun 7028 resfunexg 7100 eufnfv 7114 nvocnv 7162 fnov 7414 offveqb 7567 caofinvl 7572 oprabco 7945 df1st2 7947 df2nd2 7948 curry1 7953 curry2 7956 resixpfo 8733 pw2f1olem 8872 marypha2lem3 9205 seqof 13789 prmrec 16632 prdsbascl 17203 xpsaddlem 17293 xpsvsca 17297 oppccatid 17439 fuclid 17693 fucrid 17694 curfuncf 17965 yonedainv 18008 yonffthlem 18009 prdsidlem 18426 pws0g 18430 prdsinvlem 18693 gsummptmhm 19550 staffn 20118 prdslmodd 20240 ofco2 21609 1mavmul 21706 cnmpt1st 22828 cnmpt2nd 22829 ptunhmeo 22968 xpsxmetlem 23541 xpsmet 23544 itg2split 24923 pserulm 25590 pserdvlem2 25596 logcn 25811 logblog 25951 emcllem5 26158 gamcvg2lem 26217 crctcshlem4 28194 eucrct2eupth 28618 fcomptf 31004 gsummpt2d 31318 pl1cn 31914 esumpcvgval 32055 esumcvgsum 32065 eulerpartgbij 32348 dstfrvclim1 32453 ptpconn 33204 knoppcnlem8 34689 knoppcnlem11 34692 ctbssinf 35586 curfv 35766 ovoliunnfl 35828 voliunnfl 35830 fnopabco 35890 upixp 35896 prdsbnd 35960 prdstotbnd 35961 prdsbnd2 35962 sticksstones12a 40120 sticksstones12 40121 sticksstones19 40128 fgraphopab 41042 expgrowthi 41958 expgrowth 41960 uzmptshftfval 41971 dvcosre 43460 fourierdlem56 43710 fourierdlem62 43716 fundcmpsurbijinjpreimafv 44870 fundcmpsurinjimaid 44874 fdmdifeqresdif 45688 offvalfv 45689 |
Copyright terms: Public domain | W3C validator |