| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6602 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | dfrel4v 6151 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
| 4 | fnbr 6608 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | ex 412 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 6 | 5 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 7 | eqcom 2736 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 8 | fnbrfvb 6893 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
| 9 | 7, 8 | bitrid 283 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 10 | 9 | pm5.32da 579 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 11 | 6, 10 | bitr4d 282 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
| 12 | 11 | opabbidv 5168 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 13 | 3, 12 | eqtrd 2764 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 14 | df-mpt 5184 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
| 15 | 13, 14 | eqtr4di 2782 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 16 | fvex 6853 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 17 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
| 18 | 16, 17 | fnmpti 6643 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
| 19 | fneq1 6591 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
| 20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 Rel wrel 5636 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: fnrnfv 6902 feqmptd 6911 dffn5f 6914 eqfnfv 6985 fndmin 6999 fcompt 7087 funiun 7101 resfunexg 7171 eufnfv 7185 nvocnv 7238 fnov 7500 offvalfv 7655 offveqb 7660 caofinvl 7665 oprabco 8052 df1st2 8054 df2nd2 8055 curry1 8060 curry2 8063 resixpfo 8886 pw2f1olem 9022 marypha2lem3 9364 seqof 14000 prmrec 16869 prdsbascl 17422 xpsaddlem 17512 xpsvsca 17516 oppccatid 17656 fuclid 17907 fucrid 17908 curfuncf 18175 yonedainv 18218 yonffthlem 18219 prdsidlem 18672 pws0g 18676 prdsinvlem 18957 gsummptmhm 19846 staffn 20728 prdslmodd 20851 ofco2 22314 1mavmul 22411 cnmpt1st 23531 cnmpt2nd 23532 ptunhmeo 23671 xpsxmetlem 24243 xpsmet 24246 itg2split 25626 pserulm 26307 pserdvlem2 26314 logcn 26532 logblog 26678 emcllem5 26886 gamcvg2lem 26945 crctcshlem4 29723 eucrct2eupth 30147 fcomptf 32555 gsummpt2d 32962 pl1cn 33918 esumpcvgval 34041 esumcvgsum 34051 eulerpartgbij 34336 dstfrvclim1 34442 ptpconn 35193 knoppcnlem8 36461 knoppcnlem11 36464 ctbssinf 37367 curfv 37567 ovoliunnfl 37629 voliunnfl 37631 fnopabco 37690 upixp 37696 prdsbnd 37760 prdstotbnd 37761 prdsbnd2 37762 sticksstones12a 42118 sticksstones12 42119 sticksstones19 42126 fgraphopab 43165 rp-tfslim 43315 expgrowthi 44295 expgrowth 44297 uzmptshftfval 44308 dvcosre 45883 fourierdlem56 46133 fourierdlem62 46139 fundcmpsurbijinjpreimafv 47381 fundcmpsurinjimaid 47385 fdmdifeqresdif 48303 isnatd 49185 |
| Copyright terms: Public domain | W3C validator |