MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6950
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6651 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6189 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 217 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6657 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2738 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6944 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 578 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5214 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2771 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5232 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2789 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6904 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2731 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6693 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6640 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 208 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105   class class class wbr 5148  {copab 5210  cmpt 5231  Rel wrel 5681   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  fnrnfv  6951  feqmptd  6960  dffn5f  6963  eqfnfv  7032  fndmin  7046  fcompt  7133  funiun  7147  resfunexg  7219  eufnfv  7233  nvocnv  7282  fnov  7543  offveqb  7699  caofinvl  7704  oprabco  8087  df1st2  8089  df2nd2  8090  curry1  8095  curry2  8098  resixpfo  8936  pw2f1olem  9082  marypha2lem3  9438  seqof  14032  prmrec  16862  prdsbascl  17436  xpsaddlem  17526  xpsvsca  17530  oppccatid  17672  fuclid  17929  fucrid  17930  curfuncf  18201  yonedainv  18244  yonffthlem  18245  prdsidlem  18697  pws0g  18701  prdsinvlem  18975  gsummptmhm  19856  staffn  20688  prdslmodd  20812  ofco2  22272  1mavmul  22369  cnmpt1st  23491  cnmpt2nd  23492  ptunhmeo  23631  xpsxmetlem  24204  xpsmet  24207  itg2split  25598  pserulm  26272  pserdvlem2  26279  logcn  26494  logblog  26637  emcllem5  26844  gamcvg2lem  26903  crctcshlem4  29506  eucrct2eupth  29930  fcomptf  32315  gsummpt2d  32636  pl1cn  33398  esumpcvgval  33539  esumcvgsum  33549  eulerpartgbij  33834  dstfrvclim1  33939  ptpconn  34687  knoppcnlem8  35839  knoppcnlem11  35842  ctbssinf  36750  curfv  36931  ovoliunnfl  36993  voliunnfl  36995  fnopabco  37054  upixp  37060  prdsbnd  37124  prdstotbnd  37125  prdsbnd2  37126  sticksstones12a  41439  sticksstones12  41440  sticksstones19  41447  fgraphopab  42414  rp-tfslim  42565  expgrowthi  43554  expgrowth  43556  uzmptshftfval  43567  dvcosre  45086  fourierdlem56  45336  fourierdlem62  45342  fundcmpsurbijinjpreimafv  46533  fundcmpsurinjimaid  46537  fdmdifeqresdif  47179  offvalfv  47180
  Copyright terms: Public domain W3C validator