MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6901
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6602 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6151 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6608 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2736 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6893 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5168 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2764 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5184 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2782 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6853 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2729 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6643 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6591 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  {copab 5164  cmpt 5183  Rel wrel 5636   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  fnrnfv  6902  feqmptd  6911  dffn5f  6914  eqfnfv  6985  fndmin  6999  fcompt  7087  funiun  7101  resfunexg  7171  eufnfv  7185  nvocnv  7238  fnov  7500  offvalfv  7655  offveqb  7660  caofinvl  7665  oprabco  8052  df1st2  8054  df2nd2  8055  curry1  8060  curry2  8063  resixpfo  8886  pw2f1olem  9022  marypha2lem3  9364  seqof  14000  prmrec  16869  prdsbascl  17422  xpsaddlem  17512  xpsvsca  17516  oppccatid  17656  fuclid  17907  fucrid  17908  curfuncf  18175  yonedainv  18218  yonffthlem  18219  prdsidlem  18672  pws0g  18676  prdsinvlem  18957  gsummptmhm  19846  staffn  20728  prdslmodd  20851  ofco2  22314  1mavmul  22411  cnmpt1st  23531  cnmpt2nd  23532  ptunhmeo  23671  xpsxmetlem  24243  xpsmet  24246  itg2split  25626  pserulm  26307  pserdvlem2  26314  logcn  26532  logblog  26678  emcllem5  26886  gamcvg2lem  26945  crctcshlem4  29723  eucrct2eupth  30147  fcomptf  32555  gsummpt2d  32962  pl1cn  33918  esumpcvgval  34041  esumcvgsum  34051  eulerpartgbij  34336  dstfrvclim1  34442  ptpconn  35193  knoppcnlem8  36461  knoppcnlem11  36464  ctbssinf  37367  curfv  37567  ovoliunnfl  37629  voliunnfl  37631  fnopabco  37690  upixp  37696  prdsbnd  37760  prdstotbnd  37761  prdsbnd2  37762  sticksstones12a  42118  sticksstones12  42119  sticksstones19  42126  fgraphopab  43165  rp-tfslim  43315  expgrowthi  44295  expgrowth  44297  uzmptshftfval  44308  dvcosre  45883  fourierdlem56  46133  fourierdlem62  46139  fundcmpsurbijinjpreimafv  47381  fundcmpsurinjimaid  47385  fdmdifeqresdif  48303  isnatd  49185
  Copyright terms: Public domain W3C validator