MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6885
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6588 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6143 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6594 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2736 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6877 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5161 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2764 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5177 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2782 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6839 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2729 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6629 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6577 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  {copab 5157  cmpt 5176  Rel wrel 5628   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  fnrnfv  6886  feqmptd  6895  dffn5f  6898  eqfnfv  6969  fndmin  6983  fcompt  7071  funiun  7085  resfunexg  7155  eufnfv  7169  nvocnv  7222  fnov  7484  offvalfv  7639  offveqb  7644  caofinvl  7649  oprabco  8036  df1st2  8038  df2nd2  8039  curry1  8044  curry2  8047  resixpfo  8870  pw2f1olem  9005  marypha2lem3  9346  seqof  13984  prmrec  16852  prdsbascl  17405  xpsaddlem  17495  xpsvsca  17499  oppccatid  17643  fuclid  17894  fucrid  17895  curfuncf  18162  yonedainv  18205  yonffthlem  18206  prdsidlem  18661  pws0g  18665  prdsinvlem  18946  gsummptmhm  19837  staffn  20746  prdslmodd  20890  ofco2  22354  1mavmul  22451  cnmpt1st  23571  cnmpt2nd  23572  ptunhmeo  23711  xpsxmetlem  24283  xpsmet  24286  itg2split  25666  pserulm  26347  pserdvlem2  26354  logcn  26572  logblog  26718  emcllem5  26926  gamcvg2lem  26985  crctcshlem4  29783  eucrct2eupth  30207  fcomptf  32615  gsummpt2d  33015  pl1cn  33924  esumpcvgval  34047  esumcvgsum  34057  eulerpartgbij  34342  dstfrvclim1  34448  ptpconn  35208  knoppcnlem8  36476  knoppcnlem11  36479  ctbssinf  37382  curfv  37582  ovoliunnfl  37644  voliunnfl  37646  fnopabco  37705  upixp  37711  prdsbnd  37775  prdstotbnd  37776  prdsbnd2  37777  sticksstones12a  42133  sticksstones12  42134  sticksstones19  42141  fgraphopab  43179  rp-tfslim  43329  expgrowthi  44309  expgrowth  44311  uzmptshftfval  44322  dvcosre  45897  fourierdlem56  46147  fourierdlem62  46153  fundcmpsurbijinjpreimafv  47395  fundcmpsurinjimaid  47399  fdmdifeqresdif  48330  isnatd  49212
  Copyright terms: Public domain W3C validator