MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6889
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6591 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6145 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6597 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2740 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6881 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5161 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2768 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5177 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2786 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6844 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2733 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6632 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6580 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  {copab 5157  cmpt 5176  Rel wrel 5626   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by:  fnrnfv  6890  feqmptd  6899  dffn5f  6902  eqfnfv  6973  fndmin  6987  fcompt  7075  funiun  7089  resfunexg  7158  eufnfv  7172  nvocnv  7224  fnov  7486  offvalfv  7641  offveqb  7646  caofinvl  7651  oprabco  8035  df1st2  8037  df2nd2  8038  curry1  8043  curry2  8046  resixpfo  8870  pw2f1olem  9005  marypha2lem3  9332  seqof  13973  prmrec  16841  prdsbascl  17394  xpsaddlem  17485  xpsvsca  17489  oppccatid  17633  fuclid  17884  fucrid  17885  curfuncf  18152  yonedainv  18195  yonffthlem  18196  prdsidlem  18685  pws0g  18689  prdsinvlem  18970  gsummptmhm  19860  staffn  20767  prdslmodd  20911  ofco2  22386  1mavmul  22483  cnmpt1st  23603  cnmpt2nd  23604  ptunhmeo  23743  xpsxmetlem  24314  xpsmet  24317  itg2split  25697  pserulm  26378  pserdvlem2  26385  logcn  26603  logblog  26749  emcllem5  26957  gamcvg2lem  27016  crctcshlem4  29819  eucrct2eupth  30246  fcomptf  32662  gsummpt2d  33060  esplyfval3  33658  pl1cn  34040  esumpcvgval  34163  esumcvgsum  34173  eulerpartgbij  34457  dstfrvclim1  34563  ptpconn  35349  knoppcnlem8  36616  knoppcnlem11  36619  ctbssinf  37523  curfv  37713  ovoliunnfl  37775  voliunnfl  37777  fnopabco  37836  upixp  37842  prdsbnd  37906  prdstotbnd  37907  prdsbnd2  37908  sticksstones12a  42323  sticksstones12  42324  sticksstones19  42331  fgraphopab  43360  rp-tfslim  43510  expgrowthi  44490  expgrowth  44492  uzmptshftfval  44503  dvcosre  46072  fourierdlem56  46322  fourierdlem62  46328  fundcmpsurbijinjpreimafv  47569  fundcmpsurinjimaid  47573  fdmdifeqresdif  48504  isnatd  49384
  Copyright terms: Public domain W3C validator