| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6645 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | dfrel4v 6184 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
| 4 | fnbr 6651 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | ex 412 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 6 | 5 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 7 | eqcom 2743 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 8 | fnbrfvb 6934 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
| 9 | 7, 8 | bitrid 283 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 10 | 9 | pm5.32da 579 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 11 | 6, 10 | bitr4d 282 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
| 12 | 11 | opabbidv 5190 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 13 | 3, 12 | eqtrd 2771 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 14 | df-mpt 5207 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
| 15 | 13, 14 | eqtr4di 2789 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 16 | fvex 6894 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 17 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
| 18 | 16, 17 | fnmpti 6686 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
| 19 | fneq1 6634 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
| 20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 {copab 5186 ↦ cmpt 5206 Rel wrel 5664 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: fnrnfv 6943 feqmptd 6952 dffn5f 6955 eqfnfv 7026 fndmin 7040 fcompt 7128 funiun 7142 resfunexg 7212 eufnfv 7226 nvocnv 7279 fnov 7543 offvalfv 7698 offveqb 7703 caofinvl 7708 oprabco 8100 df1st2 8102 df2nd2 8103 curry1 8108 curry2 8111 resixpfo 8955 pw2f1olem 9095 marypha2lem3 9454 seqof 14082 prmrec 16947 prdsbascl 17502 xpsaddlem 17592 xpsvsca 17596 oppccatid 17736 fuclid 17987 fucrid 17988 curfuncf 18255 yonedainv 18298 yonffthlem 18299 prdsidlem 18752 pws0g 18756 prdsinvlem 19037 gsummptmhm 19926 staffn 20808 prdslmodd 20931 ofco2 22394 1mavmul 22491 cnmpt1st 23611 cnmpt2nd 23612 ptunhmeo 23751 xpsxmetlem 24323 xpsmet 24326 itg2split 25707 pserulm 26388 pserdvlem2 26395 logcn 26613 logblog 26759 emcllem5 26967 gamcvg2lem 27026 crctcshlem4 29807 eucrct2eupth 30231 fcomptf 32641 gsummpt2d 33048 pl1cn 33991 esumpcvgval 34114 esumcvgsum 34124 eulerpartgbij 34409 dstfrvclim1 34515 ptpconn 35260 knoppcnlem8 36523 knoppcnlem11 36526 ctbssinf 37429 curfv 37629 ovoliunnfl 37691 voliunnfl 37693 fnopabco 37752 upixp 37758 prdsbnd 37822 prdstotbnd 37823 prdsbnd2 37824 sticksstones12a 42175 sticksstones12 42176 sticksstones19 42183 fgraphopab 43202 rp-tfslim 43352 expgrowthi 44332 expgrowth 44334 uzmptshftfval 44345 dvcosre 45921 fourierdlem56 46171 fourierdlem62 46177 fundcmpsurbijinjpreimafv 47401 fundcmpsurinjimaid 47405 fdmdifeqresdif 48297 isnatd 49123 |
| Copyright terms: Public domain | W3C validator |