![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6652 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | dfrel4v 6190 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦}) |
4 | fnbr 6658 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
5 | 4 | ex 411 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 561 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
7 | eqcom 2737 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
8 | fnbrfvb 6945 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
9 | 7, 8 | bitrid 282 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
10 | 9 | pm5.32da 577 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | 6, 10 | bitr4d 281 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
12 | 11 | opabbidv 5215 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
13 | 3, 12 | eqtrd 2770 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
14 | df-mpt 5233 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
15 | 13, 14 | eqtr4di 2788 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
16 | fvex 6905 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
17 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
18 | 16, 17 | fnmpti 6694 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
19 | fneq1 6641 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
20 | 18, 19 | mpbiri 257 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
21 | 15, 20 | impbii 208 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 class class class wbr 5149 {copab 5211 ↦ cmpt 5232 Rel wrel 5682 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: fnrnfv 6952 feqmptd 6961 dffn5f 6964 eqfnfv 7033 fndmin 7047 fcompt 7134 funiun 7148 resfunexg 7220 eufnfv 7234 nvocnv 7283 fnov 7544 offveqb 7699 caofinvl 7704 oprabco 8086 df1st2 8088 df2nd2 8089 curry1 8094 curry2 8097 resixpfo 8934 pw2f1olem 9080 marypha2lem3 9436 seqof 14031 prmrec 16861 prdsbascl 17435 xpsaddlem 17525 xpsvsca 17529 oppccatid 17671 fuclid 17925 fucrid 17926 curfuncf 18197 yonedainv 18240 yonffthlem 18241 prdsidlem 18693 pws0g 18697 prdsinvlem 18970 gsummptmhm 19851 staffn 20602 prdslmodd 20726 ofco2 22175 1mavmul 22272 cnmpt1st 23394 cnmpt2nd 23395 ptunhmeo 23534 xpsxmetlem 24107 xpsmet 24110 itg2split 25501 pserulm 26168 pserdvlem2 26174 logcn 26389 logblog 26531 emcllem5 26738 gamcvg2lem 26797 crctcshlem4 29339 eucrct2eupth 29763 fcomptf 32148 gsummpt2d 32469 pl1cn 33231 esumpcvgval 33372 esumcvgsum 33382 eulerpartgbij 33667 dstfrvclim1 33772 ptpconn 34520 knoppcnlem8 35681 knoppcnlem11 35684 ctbssinf 36592 curfv 36773 ovoliunnfl 36835 voliunnfl 36837 fnopabco 36896 upixp 36902 prdsbnd 36966 prdstotbnd 36967 prdsbnd2 36968 sticksstones12a 41281 sticksstones12 41282 sticksstones19 41289 fgraphopab 42256 rp-tfslim 42407 expgrowthi 43396 expgrowth 43398 uzmptshftfval 43409 dvcosre 44928 fourierdlem56 45178 fourierdlem62 45184 fundcmpsurbijinjpreimafv 46375 fundcmpsurinjimaid 46379 fdmdifeqresdif 47107 offvalfv 47108 |
Copyright terms: Public domain | W3C validator |