MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6967
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6671 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6212 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6677 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2742 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6960 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5214 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2775 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5232 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2793 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6920 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2735 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6712 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6660 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  {copab 5210  cmpt 5231  Rel wrel 5694   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  fnrnfv  6968  feqmptd  6977  dffn5f  6980  eqfnfv  7051  fndmin  7065  fcompt  7153  funiun  7167  resfunexg  7235  eufnfv  7249  nvocnv  7301  fnov  7564  offvalfv  7719  offveqb  7724  caofinvl  7729  oprabco  8120  df1st2  8122  df2nd2  8123  curry1  8128  curry2  8131  resixpfo  8975  pw2f1olem  9115  marypha2lem3  9475  seqof  14097  prmrec  16956  prdsbascl  17530  xpsaddlem  17620  xpsvsca  17624  oppccatid  17766  fuclid  18023  fucrid  18024  curfuncf  18295  yonedainv  18338  yonffthlem  18339  prdsidlem  18795  pws0g  18799  prdsinvlem  19080  gsummptmhm  19973  staffn  20861  prdslmodd  20985  ofco2  22473  1mavmul  22570  cnmpt1st  23692  cnmpt2nd  23693  ptunhmeo  23832  xpsxmetlem  24405  xpsmet  24408  itg2split  25799  pserulm  26480  pserdvlem2  26487  logcn  26704  logblog  26850  emcllem5  27058  gamcvg2lem  27117  crctcshlem4  29850  eucrct2eupth  30274  fcomptf  32675  gsummpt2d  33035  pl1cn  33916  esumpcvgval  34059  esumcvgsum  34069  eulerpartgbij  34354  dstfrvclim1  34459  ptpconn  35218  knoppcnlem8  36483  knoppcnlem11  36486  ctbssinf  37389  curfv  37587  ovoliunnfl  37649  voliunnfl  37651  fnopabco  37710  upixp  37716  prdsbnd  37780  prdstotbnd  37781  prdsbnd2  37782  sticksstones12a  42139  sticksstones12  42140  sticksstones19  42147  fgraphopab  43192  rp-tfslim  43343  expgrowthi  44329  expgrowth  44331  uzmptshftfval  44342  dvcosre  45868  fourierdlem56  46118  fourierdlem62  46124  fundcmpsurbijinjpreimafv  47332  fundcmpsurinjimaid  47336  fdmdifeqresdif  48187
  Copyright terms: Public domain W3C validator