| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6578 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | dfrel4v 6132 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
| 4 | fnbr 6584 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | ex 412 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 6 | 5 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 7 | eqcom 2738 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 8 | fnbrfvb 6867 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
| 9 | 7, 8 | bitrid 283 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 10 | 9 | pm5.32da 579 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 11 | 6, 10 | bitr4d 282 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
| 12 | 11 | opabbidv 5152 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 13 | 3, 12 | eqtrd 2766 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 14 | df-mpt 5168 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
| 15 | 13, 14 | eqtr4di 2784 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 16 | fvex 6830 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 17 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
| 18 | 16, 17 | fnmpti 6619 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
| 19 | fneq1 6567 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
| 20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 {copab 5148 ↦ cmpt 5167 Rel wrel 5616 Fn wfn 6471 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 |
| This theorem is referenced by: fnrnfv 6876 feqmptd 6885 dffn5f 6888 eqfnfv 6959 fndmin 6973 fcompt 7061 funiun 7075 resfunexg 7144 eufnfv 7158 nvocnv 7210 fnov 7472 offvalfv 7627 offveqb 7632 caofinvl 7637 oprabco 8021 df1st2 8023 df2nd2 8024 curry1 8029 curry2 8032 resixpfo 8855 pw2f1olem 8989 marypha2lem3 9316 seqof 13961 prmrec 16829 prdsbascl 17382 xpsaddlem 17472 xpsvsca 17476 oppccatid 17620 fuclid 17871 fucrid 17872 curfuncf 18139 yonedainv 18182 yonffthlem 18183 prdsidlem 18672 pws0g 18676 prdsinvlem 18957 gsummptmhm 19847 staffn 20753 prdslmodd 20897 ofco2 22361 1mavmul 22458 cnmpt1st 23578 cnmpt2nd 23579 ptunhmeo 23718 xpsxmetlem 24289 xpsmet 24292 itg2split 25672 pserulm 26353 pserdvlem2 26360 logcn 26578 logblog 26724 emcllem5 26932 gamcvg2lem 26991 crctcshlem4 29793 eucrct2eupth 30217 fcomptf 32632 gsummpt2d 33021 pl1cn 33960 esumpcvgval 34083 esumcvgsum 34093 eulerpartgbij 34377 dstfrvclim1 34483 ptpconn 35269 knoppcnlem8 36534 knoppcnlem11 36537 ctbssinf 37440 curfv 37640 ovoliunnfl 37702 voliunnfl 37704 fnopabco 37763 upixp 37769 prdsbnd 37833 prdstotbnd 37834 prdsbnd2 37835 sticksstones12a 42190 sticksstones12 42191 sticksstones19 42198 fgraphopab 43236 rp-tfslim 43386 expgrowthi 44366 expgrowth 44368 uzmptshftfval 44379 dvcosre 45950 fourierdlem56 46200 fourierdlem62 46206 fundcmpsurbijinjpreimafv 47438 fundcmpsurinjimaid 47442 fdmdifeqresdif 48373 isnatd 49255 |
| Copyright terms: Public domain | W3C validator |