MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6584
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6316 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 5915 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 219 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6321 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 413 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 563 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2800 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6578 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8syl5bb 284 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 283 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5022 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2829 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5036 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14syl6eqr 2847 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6543 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2793 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6351 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6306 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 259 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 210 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1520  wcel 2079   class class class wbr 4956  {copab 5018  cmpt 5035  Rel wrel 5440   Fn wfn 6212  cfv 6217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-iota 6181  df-fun 6219  df-fn 6220  df-fv 6225
This theorem is referenced by:  fnrnfv  6585  feqmptd  6593  dffn5f  6596  eqfnfv  6658  fndmin  6671  fcompt  6749  funiun  6763  resfunexg  6835  eufnfv  6848  nvocnv  6894  fnov  7129  offveqb  7280  caofinvl  7285  oprabco  7638  df1st2  7640  df2nd2  7641  curry1  7646  curry2  7649  resixpfo  8338  pw2f1olem  8458  marypha2lem3  8737  seqof  13265  prmrec  16075  prdsbascl  16573  xpsaddlem  16663  xpsvsca  16667  oppccatid  16806  fuclid  17053  fucrid  17054  curfuncf  17305  yonedainv  17348  yonffthlem  17349  prdsidlem  17749  pws0g  17753  prdsinvlem  17953  gsummptmhm  18768  staffn  19298  prdslmodd  19419  ofco2  20732  1mavmul  20829  cnmpt1st  21948  cnmpt2nd  21949  ptunhmeo  22088  xpsxmetlem  22660  xpsmet  22663  itg2split  24021  pserulm  24681  pserdvlem2  24687  logcn  24899  logblog  25039  emcllem5  25247  gamcvg2lem  25306  crctcshlem4  27273  eucrct2eupthOLD  27701  eucrct2eupth  27702  fcomptf  30066  gsummpt2d  30454  pl1cn  30771  esumpcvgval  30910  esumcvgsum  30920  eulerpartgbij  31203  dstfrvclim1  31308  ptpconn  32044  knoppcnlem8  33392  knoppcnlem11  33395  ctbssinf  34164  curfv  34349  ovoliunnfl  34411  voliunnfl  34413  fnopabco  34476  upixp  34482  prdsbnd  34549  prdstotbnd  34550  prdsbnd2  34551  fgraphopab  39246  expgrowthi  40155  expgrowth  40157  uzmptshftfval  40168  dvcosre  41691  fourierdlem56  41943  fourierdlem62  41949  fdmdifeqresdif  43822  offvalfv  43823
  Copyright terms: Public domain W3C validator