MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6810
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6519 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6082 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 217 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6525 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2745 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6804 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8syl5bb 282 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 578 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 281 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5136 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2778 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5154 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2797 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6769 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2738 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6560 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6508 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 257 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 208 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  {copab 5132  cmpt 5153  Rel wrel 5585   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  fnrnfv  6811  feqmptd  6819  dffn5f  6822  eqfnfv  6891  fndmin  6904  fcompt  6987  funiun  7001  resfunexg  7073  eufnfv  7087  nvocnv  7134  fnov  7383  offveqb  7536  caofinvl  7541  oprabco  7907  df1st2  7909  df2nd2  7910  curry1  7915  curry2  7918  resixpfo  8682  pw2f1olem  8816  marypha2lem3  9126  seqof  13708  prmrec  16551  prdsbascl  17111  xpsaddlem  17201  xpsvsca  17205  oppccatid  17347  fuclid  17600  fucrid  17601  curfuncf  17872  yonedainv  17915  yonffthlem  17916  prdsidlem  18332  pws0g  18336  prdsinvlem  18599  gsummptmhm  19456  staffn  20024  prdslmodd  20146  ofco2  21508  1mavmul  21605  cnmpt1st  22727  cnmpt2nd  22728  ptunhmeo  22867  xpsxmetlem  23440  xpsmet  23443  itg2split  24819  pserulm  25486  pserdvlem2  25492  logcn  25707  logblog  25847  emcllem5  26054  gamcvg2lem  26113  crctcshlem4  28086  eucrct2eupth  28510  fcomptf  30897  gsummpt2d  31211  pl1cn  31807  esumpcvgval  31946  esumcvgsum  31956  eulerpartgbij  32239  dstfrvclim1  32344  ptpconn  33095  knoppcnlem8  34607  knoppcnlem11  34610  ctbssinf  35504  curfv  35684  ovoliunnfl  35746  voliunnfl  35748  fnopabco  35808  upixp  35814  prdsbnd  35878  prdstotbnd  35879  prdsbnd2  35880  sticksstones12a  40041  sticksstones12  40042  sticksstones19  40049  fgraphopab  40951  expgrowthi  41840  expgrowth  41842  uzmptshftfval  41853  dvcosre  43343  fourierdlem56  43593  fourierdlem62  43599  fundcmpsurbijinjpreimafv  44747  fundcmpsurinjimaid  44751  fdmdifeqresdif  45565  offvalfv  45566
  Copyright terms: Public domain W3C validator