| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6591 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | dfrel4v 6145 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
| 4 | fnbr 6597 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | ex 412 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 6 | 5 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 7 | eqcom 2740 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 8 | fnbrfvb 6881 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
| 9 | 7, 8 | bitrid 283 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 10 | 9 | pm5.32da 579 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 11 | 6, 10 | bitr4d 282 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
| 12 | 11 | opabbidv 5161 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 13 | 3, 12 | eqtrd 2768 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 14 | df-mpt 5177 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
| 15 | 13, 14 | eqtr4di 2786 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 16 | fvex 6844 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 17 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
| 18 | 16, 17 | fnmpti 6632 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
| 19 | fneq1 6580 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
| 20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 Rel wrel 5626 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: fnrnfv 6890 feqmptd 6899 dffn5f 6902 eqfnfv 6973 fndmin 6987 fcompt 7075 funiun 7089 resfunexg 7158 eufnfv 7172 nvocnv 7224 fnov 7486 offvalfv 7641 offveqb 7646 caofinvl 7651 oprabco 8035 df1st2 8037 df2nd2 8038 curry1 8043 curry2 8046 resixpfo 8870 pw2f1olem 9005 marypha2lem3 9332 seqof 13973 prmrec 16841 prdsbascl 17394 xpsaddlem 17485 xpsvsca 17489 oppccatid 17633 fuclid 17884 fucrid 17885 curfuncf 18152 yonedainv 18195 yonffthlem 18196 prdsidlem 18685 pws0g 18689 prdsinvlem 18970 gsummptmhm 19860 staffn 20767 prdslmodd 20911 ofco2 22386 1mavmul 22483 cnmpt1st 23603 cnmpt2nd 23604 ptunhmeo 23743 xpsxmetlem 24314 xpsmet 24317 itg2split 25697 pserulm 26378 pserdvlem2 26385 logcn 26603 logblog 26749 emcllem5 26957 gamcvg2lem 27016 crctcshlem4 29819 eucrct2eupth 30246 fcomptf 32662 gsummpt2d 33060 esplyfval3 33658 pl1cn 34040 esumpcvgval 34163 esumcvgsum 34173 eulerpartgbij 34457 dstfrvclim1 34563 ptpconn 35349 knoppcnlem8 36616 knoppcnlem11 36619 ctbssinf 37523 curfv 37713 ovoliunnfl 37775 voliunnfl 37777 fnopabco 37836 upixp 37842 prdsbnd 37906 prdstotbnd 37907 prdsbnd2 37908 sticksstones12a 42323 sticksstones12 42324 sticksstones19 42331 fgraphopab 43360 rp-tfslim 43510 expgrowthi 44490 expgrowth 44492 uzmptshftfval 44503 dvcosre 46072 fourierdlem56 46322 fourierdlem62 46328 fundcmpsurbijinjpreimafv 47569 fundcmpsurinjimaid 47573 fdmdifeqresdif 48504 isnatd 49384 |
| Copyright terms: Public domain | W3C validator |