MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6942
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6645 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6184 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6651 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2743 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6934 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5190 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2771 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5207 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2789 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6894 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2736 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6686 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6634 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  {copab 5186  cmpt 5206  Rel wrel 5664   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544
This theorem is referenced by:  fnrnfv  6943  feqmptd  6952  dffn5f  6955  eqfnfv  7026  fndmin  7040  fcompt  7128  funiun  7142  resfunexg  7212  eufnfv  7226  nvocnv  7279  fnov  7543  offvalfv  7698  offveqb  7703  caofinvl  7708  oprabco  8100  df1st2  8102  df2nd2  8103  curry1  8108  curry2  8111  resixpfo  8955  pw2f1olem  9095  marypha2lem3  9454  seqof  14082  prmrec  16947  prdsbascl  17502  xpsaddlem  17592  xpsvsca  17596  oppccatid  17736  fuclid  17987  fucrid  17988  curfuncf  18255  yonedainv  18298  yonffthlem  18299  prdsidlem  18752  pws0g  18756  prdsinvlem  19037  gsummptmhm  19926  staffn  20808  prdslmodd  20931  ofco2  22394  1mavmul  22491  cnmpt1st  23611  cnmpt2nd  23612  ptunhmeo  23751  xpsxmetlem  24323  xpsmet  24326  itg2split  25707  pserulm  26388  pserdvlem2  26395  logcn  26613  logblog  26759  emcllem5  26967  gamcvg2lem  27026  crctcshlem4  29807  eucrct2eupth  30231  fcomptf  32641  gsummpt2d  33048  pl1cn  33991  esumpcvgval  34114  esumcvgsum  34124  eulerpartgbij  34409  dstfrvclim1  34515  ptpconn  35260  knoppcnlem8  36523  knoppcnlem11  36526  ctbssinf  37429  curfv  37629  ovoliunnfl  37691  voliunnfl  37693  fnopabco  37752  upixp  37758  prdsbnd  37822  prdstotbnd  37823  prdsbnd2  37824  sticksstones12a  42175  sticksstones12  42176  sticksstones19  42183  fgraphopab  43202  rp-tfslim  43352  expgrowthi  44332  expgrowth  44334  uzmptshftfval  44345  dvcosre  45921  fourierdlem56  46171  fourierdlem62  46177  fundcmpsurbijinjpreimafv  47401  fundcmpsurinjimaid  47405  fdmdifeqresdif  48297  isnatd  49123
  Copyright terms: Public domain W3C validator