| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn5 | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dffn5 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6651 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | dfrel4v 6192 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
| 3 | 1, 2 | sylib 218 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
| 4 | fnbr 6657 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | ex 412 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 6 | 5 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 7 | eqcom 2741 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 8 | fnbrfvb 6940 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
| 9 | 7, 8 | bitrid 283 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 10 | 9 | pm5.32da 579 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 11 | 6, 10 | bitr4d 282 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
| 12 | 11 | opabbidv 5191 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 13 | 3, 12 | eqtrd 2769 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 14 | df-mpt 5208 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
| 15 | 13, 14 | eqtr4di 2787 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 16 | fvex 6900 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 17 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
| 18 | 16, 17 | fnmpti 6692 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴 |
| 19 | fneq1 6640 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) Fn 𝐴)) | |
| 20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → 𝐹 Fn 𝐴) |
| 21 | 15, 20 | impbii 209 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 {copab 5187 ↦ cmpt 5207 Rel wrel 5672 Fn wfn 6537 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 |
| This theorem is referenced by: fnrnfv 6949 feqmptd 6958 dffn5f 6961 eqfnfv 7032 fndmin 7046 fcompt 7134 funiun 7148 resfunexg 7218 eufnfv 7232 nvocnv 7284 fnov 7547 offvalfv 7702 offveqb 7707 caofinvl 7712 oprabco 8104 df1st2 8106 df2nd2 8107 curry1 8112 curry2 8115 resixpfo 8959 pw2f1olem 9099 marypha2lem3 9460 seqof 14083 prmrec 16943 prdsbascl 17504 xpsaddlem 17594 xpsvsca 17598 oppccatid 17738 fuclid 17990 fucrid 17991 curfuncf 18258 yonedainv 18301 yonffthlem 18302 prdsidlem 18756 pws0g 18760 prdsinvlem 19041 gsummptmhm 19931 staffn 20817 prdslmodd 20940 ofco2 22424 1mavmul 22521 cnmpt1st 23641 cnmpt2nd 23642 ptunhmeo 23781 xpsxmetlem 24353 xpsmet 24356 itg2split 25739 pserulm 26420 pserdvlem2 26427 logcn 26644 logblog 26790 emcllem5 26998 gamcvg2lem 27057 crctcshlem4 29787 eucrct2eupth 30211 fcomptf 32615 gsummpt2d 32998 pl1cn 33895 esumpcvgval 34020 esumcvgsum 34030 eulerpartgbij 34315 dstfrvclim1 34421 ptpconn 35179 knoppcnlem8 36442 knoppcnlem11 36445 ctbssinf 37348 curfv 37548 ovoliunnfl 37610 voliunnfl 37612 fnopabco 37671 upixp 37677 prdsbnd 37741 prdstotbnd 37742 prdsbnd2 37743 sticksstones12a 42099 sticksstones12 42100 sticksstones19 42107 fgraphopab 43160 rp-tfslim 43311 expgrowthi 44297 expgrowth 44299 uzmptshftfval 44310 dvcosre 45872 fourierdlem56 46122 fourierdlem62 46128 fundcmpsurbijinjpreimafv 47340 fundcmpsurinjimaid 47344 fdmdifeqresdif 48204 isnatd 48908 |
| Copyright terms: Public domain | W3C validator |