MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6980
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6681 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6221 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6687 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2747 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6973 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 578 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5232 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2780 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5250 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2798 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6933 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2740 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6723 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6670 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  {copab 5228  cmpt 5249  Rel wrel 5705   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  fnrnfv  6981  feqmptd  6990  dffn5f  6993  eqfnfv  7064  fndmin  7078  fcompt  7167  funiun  7181  resfunexg  7252  eufnfv  7266  nvocnv  7317  fnov  7581  offveqb  7740  caofinvl  7745  oprabco  8137  df1st2  8139  df2nd2  8140  curry1  8145  curry2  8148  resixpfo  8994  pw2f1olem  9142  marypha2lem3  9506  seqof  14110  prmrec  16969  prdsbascl  17543  xpsaddlem  17633  xpsvsca  17637  oppccatid  17779  fuclid  18036  fucrid  18037  curfuncf  18308  yonedainv  18351  yonffthlem  18352  prdsidlem  18804  pws0g  18808  prdsinvlem  19089  gsummptmhm  19982  staffn  20866  prdslmodd  20990  ofco2  22478  1mavmul  22575  cnmpt1st  23697  cnmpt2nd  23698  ptunhmeo  23837  xpsxmetlem  24410  xpsmet  24413  itg2split  25804  pserulm  26483  pserdvlem2  26490  logcn  26707  logblog  26853  emcllem5  27061  gamcvg2lem  27120  crctcshlem4  29853  eucrct2eupth  30277  fcomptf  32676  gsummpt2d  33032  pl1cn  33901  esumpcvgval  34042  esumcvgsum  34052  eulerpartgbij  34337  dstfrvclim1  34442  ptpconn  35201  knoppcnlem8  36466  knoppcnlem11  36469  ctbssinf  37372  curfv  37560  ovoliunnfl  37622  voliunnfl  37624  fnopabco  37683  upixp  37689  prdsbnd  37753  prdstotbnd  37754  prdsbnd2  37755  sticksstones12a  42114  sticksstones12  42115  sticksstones19  42122  fgraphopab  43164  rp-tfslim  43315  expgrowthi  44302  expgrowth  44304  uzmptshftfval  44315  dvcosre  45833  fourierdlem56  46083  fourierdlem62  46089  fundcmpsurbijinjpreimafv  47281  fundcmpsurinjimaid  47285  fdmdifeqresdif  48066  offvalfv  48067
  Copyright terms: Public domain W3C validator