MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6951
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6652 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6190 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 217 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6658 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 411 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 561 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2737 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6945 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 282 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 577 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 281 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5215 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2770 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5233 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2788 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6905 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2730 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6694 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6641 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 257 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 208 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1539  wcel 2104   class class class wbr 5149  {copab 5211  cmpt 5232  Rel wrel 5682   Fn wfn 6539  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by:  fnrnfv  6952  feqmptd  6961  dffn5f  6964  eqfnfv  7033  fndmin  7047  fcompt  7134  funiun  7148  resfunexg  7220  eufnfv  7234  nvocnv  7283  fnov  7544  offveqb  7699  caofinvl  7704  oprabco  8086  df1st2  8088  df2nd2  8089  curry1  8094  curry2  8097  resixpfo  8934  pw2f1olem  9080  marypha2lem3  9436  seqof  14031  prmrec  16861  prdsbascl  17435  xpsaddlem  17525  xpsvsca  17529  oppccatid  17671  fuclid  17925  fucrid  17926  curfuncf  18197  yonedainv  18240  yonffthlem  18241  prdsidlem  18693  pws0g  18697  prdsinvlem  18970  gsummptmhm  19851  staffn  20602  prdslmodd  20726  ofco2  22175  1mavmul  22272  cnmpt1st  23394  cnmpt2nd  23395  ptunhmeo  23534  xpsxmetlem  24107  xpsmet  24110  itg2split  25501  pserulm  26168  pserdvlem2  26174  logcn  26389  logblog  26531  emcllem5  26738  gamcvg2lem  26797  crctcshlem4  29339  eucrct2eupth  29763  fcomptf  32148  gsummpt2d  32469  pl1cn  33231  esumpcvgval  33372  esumcvgsum  33382  eulerpartgbij  33667  dstfrvclim1  33772  ptpconn  34520  knoppcnlem8  35681  knoppcnlem11  35684  ctbssinf  36592  curfv  36773  ovoliunnfl  36835  voliunnfl  36837  fnopabco  36896  upixp  36902  prdsbnd  36966  prdstotbnd  36967  prdsbnd2  36968  sticksstones12a  41281  sticksstones12  41282  sticksstones19  41289  fgraphopab  42256  rp-tfslim  42407  expgrowthi  43396  expgrowth  43398  uzmptshftfval  43409  dvcosre  44928  fourierdlem56  45178  fourierdlem62  45184  fundcmpsurbijinjpreimafv  46375  fundcmpsurinjimaid  46379  fdmdifeqresdif  47107  offvalfv  47108
  Copyright terms: Public domain W3C validator