MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6837
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6544 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6098 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 217 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6550 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 413 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 563 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2746 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6831 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 282 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 281 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5141 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2779 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5159 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2797 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6796 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2739 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6585 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6533 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 257 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 208 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2107   class class class wbr 5075  {copab 5137  cmpt 5158  Rel wrel 5595   Fn wfn 6432  cfv 6437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6395  df-fun 6439  df-fn 6440  df-fv 6445
This theorem is referenced by:  fnrnfv  6838  feqmptd  6846  dffn5f  6849  eqfnfv  6918  fndmin  6931  fcompt  7014  funiun  7028  resfunexg  7100  eufnfv  7114  nvocnv  7162  fnov  7414  offveqb  7567  caofinvl  7572  oprabco  7945  df1st2  7947  df2nd2  7948  curry1  7953  curry2  7956  resixpfo  8733  pw2f1olem  8872  marypha2lem3  9205  seqof  13789  prmrec  16632  prdsbascl  17203  xpsaddlem  17293  xpsvsca  17297  oppccatid  17439  fuclid  17693  fucrid  17694  curfuncf  17965  yonedainv  18008  yonffthlem  18009  prdsidlem  18426  pws0g  18430  prdsinvlem  18693  gsummptmhm  19550  staffn  20118  prdslmodd  20240  ofco2  21609  1mavmul  21706  cnmpt1st  22828  cnmpt2nd  22829  ptunhmeo  22968  xpsxmetlem  23541  xpsmet  23544  itg2split  24923  pserulm  25590  pserdvlem2  25596  logcn  25811  logblog  25951  emcllem5  26158  gamcvg2lem  26217  crctcshlem4  28194  eucrct2eupth  28618  fcomptf  31004  gsummpt2d  31318  pl1cn  31914  esumpcvgval  32055  esumcvgsum  32065  eulerpartgbij  32348  dstfrvclim1  32453  ptpconn  33204  knoppcnlem8  34689  knoppcnlem11  34692  ctbssinf  35586  curfv  35766  ovoliunnfl  35828  voliunnfl  35830  fnopabco  35890  upixp  35896  prdsbnd  35960  prdstotbnd  35961  prdsbnd2  35962  sticksstones12a  40120  sticksstones12  40121  sticksstones19  40128  fgraphopab  41042  expgrowthi  41958  expgrowth  41960  uzmptshftfval  41971  dvcosre  43460  fourierdlem56  43710  fourierdlem62  43716  fundcmpsurbijinjpreimafv  44870  fundcmpsurinjimaid  44874  fdmdifeqresdif  45688  offvalfv  45689
  Copyright terms: Public domain W3C validator