MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6919
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6620 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6163 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6626 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2736 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6911 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5173 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2764 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5189 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2782 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6871 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2729 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6661 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6609 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  {copab 5169  cmpt 5188  Rel wrel 5643   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  fnrnfv  6920  feqmptd  6929  dffn5f  6932  eqfnfv  7003  fndmin  7017  fcompt  7105  funiun  7119  resfunexg  7189  eufnfv  7203  nvocnv  7256  fnov  7520  offvalfv  7675  offveqb  7680  caofinvl  7685  oprabco  8075  df1st2  8077  df2nd2  8078  curry1  8083  curry2  8086  resixpfo  8909  pw2f1olem  9045  marypha2lem3  9388  seqof  14024  prmrec  16893  prdsbascl  17446  xpsaddlem  17536  xpsvsca  17540  oppccatid  17680  fuclid  17931  fucrid  17932  curfuncf  18199  yonedainv  18242  yonffthlem  18243  prdsidlem  18696  pws0g  18700  prdsinvlem  18981  gsummptmhm  19870  staffn  20752  prdslmodd  20875  ofco2  22338  1mavmul  22435  cnmpt1st  23555  cnmpt2nd  23556  ptunhmeo  23695  xpsxmetlem  24267  xpsmet  24270  itg2split  25650  pserulm  26331  pserdvlem2  26338  logcn  26556  logblog  26702  emcllem5  26910  gamcvg2lem  26969  crctcshlem4  29750  eucrct2eupth  30174  fcomptf  32582  gsummpt2d  32989  pl1cn  33945  esumpcvgval  34068  esumcvgsum  34078  eulerpartgbij  34363  dstfrvclim1  34469  ptpconn  35220  knoppcnlem8  36488  knoppcnlem11  36491  ctbssinf  37394  curfv  37594  ovoliunnfl  37656  voliunnfl  37658  fnopabco  37717  upixp  37723  prdsbnd  37787  prdstotbnd  37788  prdsbnd2  37789  sticksstones12a  42145  sticksstones12  42146  sticksstones19  42153  fgraphopab  43192  rp-tfslim  43342  expgrowthi  44322  expgrowth  44324  uzmptshftfval  44335  dvcosre  45910  fourierdlem56  46160  fourierdlem62  46166  fundcmpsurbijinjpreimafv  47408  fundcmpsurinjimaid  47412  fdmdifeqresdif  48330  isnatd  49212
  Copyright terms: Public domain W3C validator