MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6948
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6651 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6192 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6657 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2741 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6940 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5191 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2769 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5208 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14eqtr4di 2787 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6900 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2734 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6692 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6640 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 258 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 209 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5125  {copab 5187  cmpt 5207  Rel wrel 5672   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  fnrnfv  6949  feqmptd  6958  dffn5f  6961  eqfnfv  7032  fndmin  7046  fcompt  7134  funiun  7148  resfunexg  7218  eufnfv  7232  nvocnv  7284  fnov  7547  offvalfv  7702  offveqb  7707  caofinvl  7712  oprabco  8104  df1st2  8106  df2nd2  8107  curry1  8112  curry2  8115  resixpfo  8959  pw2f1olem  9099  marypha2lem3  9460  seqof  14083  prmrec  16943  prdsbascl  17504  xpsaddlem  17594  xpsvsca  17598  oppccatid  17738  fuclid  17990  fucrid  17991  curfuncf  18258  yonedainv  18301  yonffthlem  18302  prdsidlem  18756  pws0g  18760  prdsinvlem  19041  gsummptmhm  19931  staffn  20817  prdslmodd  20940  ofco2  22424  1mavmul  22521  cnmpt1st  23641  cnmpt2nd  23642  ptunhmeo  23781  xpsxmetlem  24353  xpsmet  24356  itg2split  25739  pserulm  26420  pserdvlem2  26427  logcn  26644  logblog  26790  emcllem5  26998  gamcvg2lem  27057  crctcshlem4  29787  eucrct2eupth  30211  fcomptf  32615  gsummpt2d  32998  pl1cn  33895  esumpcvgval  34020  esumcvgsum  34030  eulerpartgbij  34315  dstfrvclim1  34421  ptpconn  35179  knoppcnlem8  36442  knoppcnlem11  36445  ctbssinf  37348  curfv  37548  ovoliunnfl  37610  voliunnfl  37612  fnopabco  37671  upixp  37677  prdsbnd  37741  prdstotbnd  37742  prdsbnd2  37743  sticksstones12a  42099  sticksstones12  42100  sticksstones19  42107  fgraphopab  43160  rp-tfslim  43311  expgrowthi  44297  expgrowth  44299  uzmptshftfval  44310  dvcosre  45872  fourierdlem56  46122  fourierdlem62  46128  fundcmpsurbijinjpreimafv  47340  fundcmpsurinjimaid  47344  fdmdifeqresdif  48204  isnatd  48908
  Copyright terms: Public domain W3C validator