![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dif1o | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
dif1o | ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 7856 | . . . 4 ⊢ 1o = {∅} | |
2 | 1 | difeq2i 3948 | . . 3 ⊢ (𝐵 ∖ 1o) = (𝐵 ∖ {∅}) |
3 | 2 | eleq2i 2851 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅})) |
4 | eldifsn 4550 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | |
5 | 3, 4 | bitri 267 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∈ wcel 2107 ≠ wne 2969 ∖ cdif 3789 ∅c0 4141 {csn 4398 1oc1o 7836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-nul 4142 df-sn 4399 df-suc 5982 df-1o 7843 |
This theorem is referenced by: ondif1 7865 brwitnlem 7871 oelim2 7959 oeeulem 7965 oeeui 7966 omabs 8011 cantnfp1lem3 8874 cantnfp1 8875 cantnflem1 8883 cantnflem3 8885 cantnflem4 8886 cnfcom3lem 8897 |
Copyright terms: Public domain | W3C validator |