Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dif1o | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
dif1o | ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8279 | . . . 4 ⊢ 1o = {∅} | |
2 | 1 | difeq2i 4050 | . . 3 ⊢ (𝐵 ∖ 1o) = (𝐵 ∖ {∅}) |
3 | 2 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅})) |
4 | eldifsn 4717 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∅c0 4253 {csn 4558 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-suc 6257 df-1o 8267 |
This theorem is referenced by: ondif1 8293 brwitnlem 8299 oelim2 8388 oeeulem 8394 oeeui 8395 omabs 8441 cantnfp1lem3 9368 cantnfp1 9369 cantnflem1 9377 cantnflem3 9379 cantnflem4 9380 cnfcom3lem 9391 |
Copyright terms: Public domain | W3C validator |