| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif1o | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.) |
| Ref | Expression |
|---|---|
| dif1o | ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8387 | . . . 4 ⊢ 1o = {∅} | |
| 2 | 1 | difeq2i 4068 | . . 3 ⊢ (𝐵 ∖ 1o) = (𝐵 ∖ {∅}) |
| 3 | 2 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅})) |
| 4 | eldifsn 4733 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ∅c0 4278 {csn 4571 1oc1o 8373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-nul 4279 df-sn 4572 df-suc 6307 df-1o 8380 |
| This theorem is referenced by: ondif1 8411 brwitnlem 8417 oelim2 8505 oeeulem 8511 oeeui 8512 omabs 8561 cantnfp1lem3 9565 cantnfp1 9566 cantnflem1 9574 cantnflem3 9576 cantnflem4 9577 cnfcom3lem 9588 |
| Copyright terms: Public domain | W3C validator |