MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1o Structured version   Visualization version   GIF version

Theorem dif1o 8467
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dif1o (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))

Proof of Theorem dif1o
StepHypRef Expression
1 df1o2 8444 . . . 4 1o = {∅}
21difeq2i 4089 . . 3 (𝐵 ∖ 1o) = (𝐵 ∖ {∅})
32eleq2i 2821 . 2 (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅}))
4 eldifsn 4753 . 2 (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴𝐵𝐴 ≠ ∅))
53, 4bitri 275 1 (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wne 2926  cdif 3914  c0 4299  {csn 4592  1oc1o 8430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-suc 6341  df-1o 8437
This theorem is referenced by:  ondif1  8468  brwitnlem  8474  oelim2  8562  oeeulem  8568  oeeui  8569  omabs  8618  cantnfp1lem3  9640  cantnfp1  9641  cantnflem1  9649  cantnflem3  9651  cantnflem4  9652  cnfcom3lem  9663
  Copyright terms: Public domain W3C validator