MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1o Structured version   Visualization version   GIF version

Theorem dif1o 8292
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dif1o (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))

Proof of Theorem dif1o
StepHypRef Expression
1 df1o2 8279 . . . 4 1o = {∅}
21difeq2i 4050 . . 3 (𝐵 ∖ 1o) = (𝐵 ∖ {∅})
32eleq2i 2830 . 2 (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅}))
4 eldifsn 4717 . 2 (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴𝐵𝐴 ≠ ∅))
53, 4bitri 274 1 (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  wne 2942  cdif 3880  c0 4253  {csn 4558  1oc1o 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-suc 6257  df-1o 8267
This theorem is referenced by:  ondif1  8293  brwitnlem  8299  oelim2  8388  oeeulem  8394  oeeui  8395  omabs  8441  cantnfp1lem3  9368  cantnfp1  9369  cantnflem1  9377  cantnflem3  9379  cantnflem4  9380  cnfcom3lem  9391
  Copyright terms: Public domain W3C validator