MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1o Structured version   Visualization version   GIF version

Theorem dif1o 8512
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dif1o (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))

Proof of Theorem dif1o
StepHypRef Expression
1 df1o2 8487 . . . 4 1o = {∅}
21difeq2i 4098 . . 3 (𝐵 ∖ 1o) = (𝐵 ∖ {∅})
32eleq2i 2826 . 2 (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅}))
4 eldifsn 4762 . 2 (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴𝐵𝐴 ≠ ∅))
53, 4bitri 275 1 (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴𝐵𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wne 2932  cdif 3923  c0 4308  {csn 4601  1oc1o 8473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-nul 4309  df-sn 4602  df-suc 6358  df-1o 8480
This theorem is referenced by:  ondif1  8513  brwitnlem  8519  oelim2  8607  oeeulem  8613  oeeui  8614  omabs  8663  cantnfp1lem3  9694  cantnfp1  9695  cantnflem1  9703  cantnflem3  9705  cantnflem4  9706  cnfcom3lem  9717
  Copyright terms: Public domain W3C validator