| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif1o | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.) |
| Ref | Expression |
|---|---|
| dif1o | ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8487 | . . . 4 ⊢ 1o = {∅} | |
| 2 | 1 | difeq2i 4098 | . . 3 ⊢ (𝐵 ∖ 1o) = (𝐵 ∖ {∅}) |
| 3 | 2 | eleq2i 2826 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ 𝐴 ∈ (𝐵 ∖ {∅})) |
| 4 | eldifsn 4762 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ∅c0 4308 {csn 4601 1oc1o 8473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-suc 6358 df-1o 8480 |
| This theorem is referenced by: ondif1 8513 brwitnlem 8519 oelim2 8607 oeeulem 8613 oeeui 8614 omabs 8663 cantnfp1lem3 9694 cantnfp1 9695 cantnflem1 9703 cantnflem3 9705 cantnflem4 9706 cnfcom3lem 9717 |
| Copyright terms: Public domain | W3C validator |