MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif1 Structured version   Visualization version   GIF version

Theorem ondif1 8539
Description: Two ways to say that 𝐴 is a nonzero ordinal number. Lemma 1.10 of [Schloeder] p. 2. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif1 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))

Proof of Theorem ondif1
StepHypRef Expression
1 dif1o 8538 . 2 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅))
2 on0eln0 6440 . . 3 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
32pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅))
41, 3bitr4i 278 1 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wne 2940  cdif 3948  c0 4333  Oncon0 6384  1oc1o 8499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-suc 6390  df-1o 8506
This theorem is referenced by:  cantnflem2  9730  oef1o  9738  cnfcom3  9744  infxpenc  10058  onexoegt  43256  ondif1i  43275  omnord1  43318  oenord1  43329  cantnftermord  43333  succlg  43341  dflim5  43342  onmcl  43344  omabs2  43345  naddwordnexlem4  43414
  Copyright terms: Public domain W3C validator