MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif1 Structured version   Visualization version   GIF version

Theorem ondif1 8557
Description: Two ways to say that 𝐴 is a nonzero ordinal number. Lemma 1.10 of [Schloeder] p. 2. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif1 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))

Proof of Theorem ondif1
StepHypRef Expression
1 dif1o 8556 . 2 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅))
2 on0eln0 6451 . . 3 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
32pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅))
41, 3bitr4i 278 1 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wne 2946  cdif 3973  c0 4352  Oncon0 6395  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401  df-1o 8522
This theorem is referenced by:  cantnflem2  9759  oef1o  9767  cnfcom3  9773  infxpenc  10087  onexoegt  43205  ondif1i  43224  omnord1  43267  oenord1  43278  cantnftermord  43282  succlg  43290  dflim5  43291  onmcl  43293  omabs2  43294  naddwordnexlem4  43363
  Copyright terms: Public domain W3C validator