![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ondif1 | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is a nonzero ordinal number. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
ondif1 | ⊢ (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif1o 7852 | . 2 ⊢ (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅)) | |
2 | on0eln0 6022 | . . 3 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 2 | pm5.32i 570 | . 2 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅)) |
4 | 1, 3 | bitr4i 270 | 1 ⊢ (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∈ wcel 2164 ≠ wne 2999 ∖ cdif 3795 ∅c0 4146 Oncon0 5967 1oc1o 7824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-tr 4978 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-ord 5970 df-on 5971 df-suc 5973 df-1o 7831 |
This theorem is referenced by: cantnflem2 8871 oef1o 8879 cnfcom3 8885 infxpenc 9161 |
Copyright terms: Public domain | W3C validator |