Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ondif1 | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is a nonzero ordinal number. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
ondif1 | ⊢ (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif1o 8292 | . 2 ⊢ (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅)) | |
2 | on0eln0 6306 | . . 3 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 2 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅)) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∅c0 4253 Oncon0 6251 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 df-1o 8267 |
This theorem is referenced by: cantnflem2 9378 oef1o 9386 cnfcom3 9392 infxpenc 9705 |
Copyright terms: Public domain | W3C validator |