MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif1 Structured version   Visualization version   GIF version

Theorem ondif1 8442
Description: Two ways to say that 𝐴 is a nonzero ordinal number. Lemma 1.10 of [Schloeder] p. 2. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif1 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))

Proof of Theorem ondif1
StepHypRef Expression
1 dif1o 8441 . 2 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅))
2 on0eln0 6377 . . 3 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
32pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ On ∧ 𝐴 ≠ ∅))
41, 3bitr4i 278 1 (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wne 2925  cdif 3908  c0 4292  Oncon0 6320  1oc1o 8404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-suc 6326  df-1o 8411
This theorem is referenced by:  cantnflem2  9619  oef1o  9627  cnfcom3  9633  infxpenc  9947  onexoegt  43226  ondif1i  43244  omnord1  43287  oenord1  43298  cantnftermord  43302  succlg  43310  dflim5  43311  onmcl  43313  omabs2  43314  naddwordnexlem4  43383
  Copyright terms: Public domain W3C validator