Step | Hyp | Ref
| Expression |
1 | | cantnfs.s |
. . . . 5
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
2 | | cantnfs.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | cantnfs.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ On) |
4 | | cantnf.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
5 | | oemapval.t |
. . . . . . . . . . . . . 14
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
6 | | cantnf.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) |
7 | | cantnf.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
8 | | cantnf.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∅ ∈ 𝐶) |
9 | 1, 2, 3, 5, 6, 7, 8 | cantnflem2 9378 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧
𝐶 ∈ (On ∖
1o))) |
10 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = 𝑋 |
11 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ 𝑌 = 𝑌 |
12 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ 𝑍 = 𝑍 |
13 | 10, 11, 12 | 3pm3.2i 1337 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍) |
14 | | cantnf.x |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = ∪
∩ {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴 ↑o 𝑐)} |
15 | | cantnf.p |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o 𝑋)(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶)) |
16 | | cantnf.y |
. . . . . . . . . . . . . . 15
⊢ 𝑌 = (1st ‘𝑃) |
17 | | cantnf.z |
. . . . . . . . . . . . . . 15
⊢ 𝑍 = (2nd ‘𝑃) |
18 | 14, 15, 16, 17 | oeeui 8395 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐶
∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) ∧ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍))) |
19 | 13, 18 | mpbiri 257 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐶
∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) ∧ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)) |
20 | 9, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) ∧ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)) |
21 | 20 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋))) |
22 | 21 | simp1d 1140 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ On) |
23 | | oecl 8329 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴 ↑o 𝑋) ∈ On) |
24 | 2, 22, 23 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ↑o 𝑋) ∈ On) |
25 | 21 | simp2d 1141 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 1o)) |
26 | 25 | eldifad 3895 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
27 | | onelon 6276 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ On) |
28 | 2, 26, 27 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ On) |
29 | | dif1o 8292 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ≠ ∅)) |
30 | 29 | simprbi 496 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅) |
31 | 25, 30 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ≠ ∅) |
32 | | on0eln0 6306 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ On → (∅
∈ 𝑌 ↔ 𝑌 ≠ ∅)) |
33 | 28, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅)) |
34 | 31, 33 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ 𝑌) |
35 | | omword1 8366 |
. . . . . . . . 9
⊢ ((((𝐴 ↑o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈
𝑌) → (𝐴 ↑o 𝑋) ⊆ ((𝐴 ↑o 𝑋) ·o 𝑌)) |
36 | 24, 28, 34, 35 | syl21anc 834 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ↑o 𝑋) ⊆ ((𝐴 ↑o 𝑋) ·o 𝑌)) |
37 | | omcl 8328 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴 ↑o 𝑋) ·o 𝑌) ∈ On) |
38 | 24, 28, 37 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o 𝑌) ∈ On) |
39 | 21 | simp3d 1142 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ (𝐴 ↑o 𝑋)) |
40 | | onelon 6276 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) → 𝑍 ∈ On) |
41 | 24, 39, 40 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ On) |
42 | | oaword1 8345 |
. . . . . . . . . 10
⊢ ((((𝐴 ↑o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴 ↑o 𝑋) ·o 𝑌) ⊆ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍)) |
43 | 38, 41, 42 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o 𝑌) ⊆ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍)) |
44 | 20 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) |
45 | 43, 44 | sseqtrd 3957 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o 𝑌) ⊆ 𝐶) |
46 | 36, 45 | sstrd 3927 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑o 𝑋) ⊆ 𝐶) |
47 | | oecl 8329 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
48 | 2, 3, 47 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
49 | | ontr2 6298 |
. . . . . . . 8
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ (𝐴 ↑o 𝐵) ∈ On) → (((𝐴 ↑o 𝑋) ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 ↑o 𝐵)) → (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o 𝐵))) |
50 | 24, 48, 49 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (((𝐴 ↑o 𝑋) ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 ↑o 𝐵)) → (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o 𝐵))) |
51 | 46, 6, 50 | mp2and 695 |
. . . . . 6
⊢ (𝜑 → (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o 𝐵)) |
52 | 9 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (On ∖
2o)) |
53 | | oeord 8381 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ (On ∖
2o)) → (𝑋
∈ 𝐵 ↔ (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o 𝐵))) |
54 | 22, 3, 52, 53 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o 𝐵))) |
55 | 51, 54 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
56 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ On) |
57 | 3 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝐵 ∈ On) |
58 | | suppssdm 7964 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 supp ∅) ⊆ dom 𝐺 |
59 | 1, 2, 3 | cantnfs 9354 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
60 | 4, 59 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
61 | 60 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
62 | 58, 61 | fssdm 6604 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝐵) |
63 | 62 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ 𝐵) |
64 | | onelon 6276 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
65 | 57, 63, 64 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ On) |
66 | | oecl 8329 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ↑o 𝑥) ∈ On) |
67 | 56, 65, 66 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐴 ↑o 𝑥) ∈ On) |
68 | 61 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝐺:𝐵⟶𝐴) |
69 | 68, 63 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐺‘𝑥) ∈ 𝐴) |
70 | | onelon 6276 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝐺‘𝑥) ∈ 𝐴) → (𝐺‘𝑥) ∈ On) |
71 | 56, 69, 70 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐺‘𝑥) ∈ On) |
72 | 61 | ffnd 6585 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 Fn 𝐵) |
73 | 8 | elexd 3442 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∅ ∈
V) |
74 | | elsuppfn 7958 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
(𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥 ∈ 𝐵 ∧ (𝐺‘𝑥) ≠ ∅))) |
75 | 72, 3, 73, 74 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥 ∈ 𝐵 ∧ (𝐺‘𝑥) ≠ ∅))) |
76 | 75 | simplbda 499 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐺‘𝑥) ≠ ∅) |
77 | | on0eln0 6306 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑥) ∈ On → (∅ ∈ (𝐺‘𝑥) ↔ (𝐺‘𝑥) ≠ ∅)) |
78 | 71, 77 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∅ ∈
(𝐺‘𝑥) ↔ (𝐺‘𝑥) ≠ ∅)) |
79 | 76, 78 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → ∅ ∈ (𝐺‘𝑥)) |
80 | | omword1 8366 |
. . . . . . . . . . 11
⊢ ((((𝐴 ↑o 𝑥) ∈ On ∧ (𝐺‘𝑥) ∈ On) ∧ ∅ ∈ (𝐺‘𝑥)) → (𝐴 ↑o 𝑥) ⊆ ((𝐴 ↑o 𝑥) ·o (𝐺‘𝑥))) |
81 | 67, 71, 79, 80 | syl21anc 834 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐴 ↑o 𝑥) ⊆ ((𝐴 ↑o 𝑥) ·o (𝐺‘𝑥))) |
82 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ OrdIso( E
, (𝐺 supp ∅)) =
OrdIso( E , (𝐺 supp
∅)) |
83 | 4 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝐺 ∈ 𝑆) |
84 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) =
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) |
85 | 1, 56, 57, 82, 83, 84, 63 | cantnfle 9359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 ↑o 𝑥) ·o (𝐺‘𝑥)) ⊆ ((𝐴 CNF 𝐵)‘𝐺)) |
86 | | cantnf.v |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍) |
87 | 86 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍) |
88 | 85, 87 | sseqtrd 3957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 ↑o 𝑥) ·o (𝐺‘𝑥)) ⊆ 𝑍) |
89 | 81, 88 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐴 ↑o 𝑥) ⊆ 𝑍) |
90 | 39 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑍 ∈ (𝐴 ↑o 𝑋)) |
91 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐴 ↑o 𝑋) ∈ On) |
92 | | ontr2 6298 |
. . . . . . . . . 10
⊢ (((𝐴 ↑o 𝑥) ∈ On ∧ (𝐴 ↑o 𝑋) ∈ On) → (((𝐴 ↑o 𝑥) ⊆ 𝑍 ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) → (𝐴 ↑o 𝑥) ∈ (𝐴 ↑o 𝑋))) |
93 | 67, 91, 92 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (((𝐴 ↑o 𝑥) ⊆ 𝑍 ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) → (𝐴 ↑o 𝑥) ∈ (𝐴 ↑o 𝑋))) |
94 | 89, 90, 93 | mp2and 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝐴 ↑o 𝑥) ∈ (𝐴 ↑o 𝑋)) |
95 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑋 ∈ On) |
96 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ (On ∖
2o)) |
97 | | oeord 8381 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖
2o)) → (𝑥
∈ 𝑋 ↔ (𝐴 ↑o 𝑥) ∈ (𝐴 ↑o 𝑋))) |
98 | 65, 95, 96, 97 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑥 ∈ 𝑋 ↔ (𝐴 ↑o 𝑥) ∈ (𝐴 ↑o 𝑋))) |
99 | 94, 98 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ 𝑋) |
100 | 99 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐺 supp ∅) → 𝑥 ∈ 𝑋)) |
101 | 100 | ssrdv 3923 |
. . . . 5
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) |
102 | | cantnf.f |
. . . . 5
⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) |
103 | 1, 2, 3, 4, 55, 26, 101, 102 | cantnfp1 9369 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))) |
104 | 103 | simprd 495 |
. . 3
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))) |
105 | 86 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍)) |
106 | 104, 105,
44 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = 𝐶) |
107 | 1, 2, 3 | cantnff 9362 |
. . . 4
⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) |
108 | 107 | ffnd 6585 |
. . 3
⊢ (𝜑 → (𝐴 CNF 𝐵) Fn 𝑆) |
109 | 103 | simpld 494 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
110 | | fnfvelrn 6940 |
. . 3
⊢ (((𝐴 CNF 𝐵) Fn 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵)) |
111 | 108, 109,
110 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵)) |
112 | 106, 111 | eqeltrrd 2840 |
1
⊢ (𝜑 → 𝐶 ∈ ran (𝐴 CNF 𝐵)) |