MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem3 Structured version   Visualization version   GIF version

Theorem cantnflem3 9449
Description: Lemma for cantnf 9451. Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than 𝐶 has a normal form, we can use oeeu 8434 to factor 𝐶 into the form ((𝐴o 𝑋) ·o 𝑌) +o 𝑍 where 0 < 𝑌 < 𝐴 and 𝑍 < (𝐴o 𝑋) (and a fortiori 𝑋 < 𝐵). Then since 𝑍 < (𝐴o 𝑋) ≤ (𝐴o 𝑋) ·o 𝑌𝐶, 𝑍 has a normal form, and by appending the term (𝐴o 𝑋) ·o 𝑌 using cantnfp1 9439 we get a normal form for 𝐶. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
cantnf.g (𝜑𝐺𝑆)
cantnf.v (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
cantnf.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnflem3 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑡,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝑡,𝑎,𝐴,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑡   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑡,𝑥,𝑦,𝑧   𝑡,𝑍,𝑥,𝑦,𝑧   𝐺,𝑐,𝑡,𝑤,𝑥,𝑦,𝑧   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑡,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝐶(𝑡)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝐹(𝑡,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 cantnf.g . . . . 5 (𝜑𝐺𝑆)
5 oemapval.t . . . . . . . . . . . . . 14 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴o 𝐵))
7 cantnf.s . . . . . . . . . . . . . 14 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
8 cantnf.e . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ 𝐶)
91, 2, 3, 5, 6, 7, 8cantnflem2 9448 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
10 eqid 2738 . . . . . . . . . . . . . . 15 𝑋 = 𝑋
11 eqid 2738 . . . . . . . . . . . . . . 15 𝑌 = 𝑌
12 eqid 2738 . . . . . . . . . . . . . . 15 𝑍 = 𝑍
1310, 11, 123pm3.2i 1338 . . . . . . . . . . . . . 14 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
14 cantnf.x . . . . . . . . . . . . . . 15 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
15 cantnf.p . . . . . . . . . . . . . . 15 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
16 cantnf.y . . . . . . . . . . . . . . 15 𝑌 = (1st𝑃)
17 cantnf.z . . . . . . . . . . . . . . 15 𝑍 = (2nd𝑃)
1814, 15, 16, 17oeeui 8433 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1913, 18mpbiri 257 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
209, 19syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
2120simpld 495 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)))
2221simp1d 1141 . . . . . . . . . 10 (𝜑𝑋 ∈ On)
23 oecl 8367 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
242, 22, 23syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴o 𝑋) ∈ On)
2521simp2d 1142 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐴 ∖ 1o))
2625eldifad 3899 . . . . . . . . . 10 (𝜑𝑌𝐴)
27 onelon 6291 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
282, 26, 27syl2anc 584 . . . . . . . . 9 (𝜑𝑌 ∈ On)
29 dif1o 8330 . . . . . . . . . . . 12 (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌𝐴𝑌 ≠ ∅))
3029simprbi 497 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅)
3125, 30syl 17 . . . . . . . . . 10 (𝜑𝑌 ≠ ∅)
32 on0eln0 6321 . . . . . . . . . . 11 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3328, 32syl 17 . . . . . . . . . 10 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
3431, 33mpbird 256 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
35 omword1 8404 . . . . . . . . 9 ((((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
3624, 28, 34, 35syl21anc 835 . . . . . . . 8 (𝜑 → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
37 omcl 8366 . . . . . . . . . . 11 (((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3824, 28, 37syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3921simp3d 1143 . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝐴o 𝑋))
40 onelon 6291 . . . . . . . . . . 11 (((𝐴o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴o 𝑋)) → 𝑍 ∈ On)
4124, 39, 40syl2anc 584 . . . . . . . . . 10 (𝜑𝑍 ∈ On)
42 oaword1 8383 . . . . . . . . . 10 ((((𝐴o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4338, 41, 42syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4420simprd 496 . . . . . . . . 9 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)
4543, 44sseqtrd 3961 . . . . . . . 8 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ 𝐶)
4636, 45sstrd 3931 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ⊆ 𝐶)
47 oecl 8367 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
482, 3, 47syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴o 𝐵) ∈ On)
49 ontr2 6313 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ (𝐴o 𝐵) ∈ On) → (((𝐴o 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴o 𝐵)) → (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5024, 48, 49syl2anc 584 . . . . . . 7 (𝜑 → (((𝐴o 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴o 𝐵)) → (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5146, 6, 50mp2and 696 . . . . . 6 (𝜑 → (𝐴o 𝑋) ∈ (𝐴o 𝐵))
529simpld 495 . . . . . . 7 (𝜑𝐴 ∈ (On ∖ 2o))
53 oeord 8419 . . . . . . 7 ((𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑋𝐵 ↔ (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5422, 3, 52, 53syl3anc 1370 . . . . . 6 (𝜑 → (𝑋𝐵 ↔ (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5551, 54mpbird 256 . . . . 5 (𝜑𝑋𝐵)
562adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ On)
573adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐵 ∈ On)
58 suppssdm 7993 . . . . . . . . . . . . . . 15 (𝐺 supp ∅) ⊆ dom 𝐺
591, 2, 3cantnfs 9424 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
604, 59mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
6160simpld 495 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐵𝐴)
6258, 61fssdm 6620 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
6362sselda 3921 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝐵)
64 onelon 6291 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6557, 63, 64syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ On)
66 oecl 8367 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴o 𝑥) ∈ On)
6756, 65, 66syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ∈ On)
6861adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺:𝐵𝐴)
6968, 63ffvelrnd 6962 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ 𝐴)
70 onelon 6291 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺𝑥) ∈ 𝐴) → (𝐺𝑥) ∈ On)
7156, 69, 70syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ On)
7261ffnd 6601 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐵)
738elexd 3452 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
74 elsuppfn 7987 . . . . . . . . . . . . . 14 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7572, 3, 73, 74syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7675simplbda 500 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ≠ ∅)
77 on0eln0 6321 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ On → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
7871, 77syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
7976, 78mpbird 256 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ∅ ∈ (𝐺𝑥))
80 omword1 8404 . . . . . . . . . . 11 ((((𝐴o 𝑥) ∈ On ∧ (𝐺𝑥) ∈ On) ∧ ∅ ∈ (𝐺𝑥)) → (𝐴o 𝑥) ⊆ ((𝐴o 𝑥) ·o (𝐺𝑥)))
8167, 71, 79, 80syl21anc 835 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ⊆ ((𝐴o 𝑥) ·o (𝐺𝑥)))
82 eqid 2738 . . . . . . . . . . . 12 OrdIso( E , (𝐺 supp ∅)) = OrdIso( E , (𝐺 supp ∅))
834adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺𝑆)
84 eqid 2738 . . . . . . . . . . . 12 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅)
851, 56, 57, 82, 83, 84, 63cantnfle 9429 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴o 𝑥) ·o (𝐺𝑥)) ⊆ ((𝐴 CNF 𝐵)‘𝐺))
86 cantnf.v . . . . . . . . . . . 12 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
8786adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
8885, 87sseqtrd 3961 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴o 𝑥) ·o (𝐺𝑥)) ⊆ 𝑍)
8981, 88sstrd 3931 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ⊆ 𝑍)
9039adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑍 ∈ (𝐴o 𝑋))
9124adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑋) ∈ On)
92 ontr2 6313 . . . . . . . . . 10 (((𝐴o 𝑥) ∈ On ∧ (𝐴o 𝑋) ∈ On) → (((𝐴o 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴o 𝑋)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9367, 91, 92syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (((𝐴o 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴o 𝑋)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9489, 90, 93mp2and 696 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋))
9522adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑋 ∈ On)
9652adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ (On ∖ 2o))
97 oeord 8419 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑥𝑋 ↔ (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9865, 95, 96, 97syl3anc 1370 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝑥𝑋 ↔ (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9994, 98mpbird 256 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝑋)
10099ex 413 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) → 𝑥𝑋))
101100ssrdv 3927 . . . . 5 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
102 cantnf.f . . . . 5 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1031, 2, 3, 4, 55, 26, 101, 102cantnfp1 9439 . . . 4 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
104103simprd 496 . . 3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
10586oveq2d 7291 . . 3 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)) = (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
106104, 105, 443eqtrd 2782 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = 𝐶)
1071, 2, 3cantnff 9432 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
108107ffnd 6601 . . 3 (𝜑 → (𝐴 CNF 𝐵) Fn 𝑆)
109103simpld 495 . . 3 (𝜑𝐹𝑆)
110 fnfvelrn 6958 . . 3 (((𝐴 CNF 𝐵) Fn 𝑆𝐹𝑆) → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
111108, 109, 110syl2anc 584 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
112106, 111eqeltrrd 2840 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  c0 4256  ifcif 4459  cop 4567   cuni 4839   cint 4879   class class class wbr 5074  {copab 5136  cmpt 5157   E cep 5494  dom cdm 5589  ran crn 5590  Oncon0 6266  cio 6389   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830   supp csupp 7977  seqωcseqom 8278  1oc1o 8290  2oc2o 8291   +o coa 8294   ·o comu 8295  o coe 8296   finSupp cfsupp 9128  OrdIsocoi 9268   CNF ccnf 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-cnf 9420
This theorem is referenced by:  cantnflem4  9450
  Copyright terms: Public domain W3C validator