MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem3 Structured version   Visualization version   GIF version

Theorem cantnflem3 9295
Description: Lemma for cantnf 9297. Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than 𝐶 has a normal form, we can use oeeu 8320 to factor 𝐶 into the form ((𝐴o 𝑋) ·o 𝑌) +o 𝑍 where 0 < 𝑌 < 𝐴 and 𝑍 < (𝐴o 𝑋) (and a fortiori 𝑋 < 𝐵). Then since 𝑍 < (𝐴o 𝑋) ≤ (𝐴o 𝑋) ·o 𝑌𝐶, 𝑍 has a normal form, and by appending the term (𝐴o 𝑋) ·o 𝑌 using cantnfp1 9285 we get a normal form for 𝐶. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
cantnf.g (𝜑𝐺𝑆)
cantnf.v (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
cantnf.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnflem3 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑡,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝑡,𝑎,𝐴,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑡   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑡,𝑥,𝑦,𝑧   𝑡,𝑍,𝑥,𝑦,𝑧   𝐺,𝑐,𝑡,𝑤,𝑥,𝑦,𝑧   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑡,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝐶(𝑡)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝐹(𝑡,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 cantnf.g . . . . 5 (𝜑𝐺𝑆)
5 oemapval.t . . . . . . . . . . . . . 14 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴o 𝐵))
7 cantnf.s . . . . . . . . . . . . . 14 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
8 cantnf.e . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ 𝐶)
91, 2, 3, 5, 6, 7, 8cantnflem2 9294 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
10 eqid 2734 . . . . . . . . . . . . . . 15 𝑋 = 𝑋
11 eqid 2734 . . . . . . . . . . . . . . 15 𝑌 = 𝑌
12 eqid 2734 . . . . . . . . . . . . . . 15 𝑍 = 𝑍
1310, 11, 123pm3.2i 1341 . . . . . . . . . . . . . 14 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
14 cantnf.x . . . . . . . . . . . . . . 15 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
15 cantnf.p . . . . . . . . . . . . . . 15 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
16 cantnf.y . . . . . . . . . . . . . . 15 𝑌 = (1st𝑃)
17 cantnf.z . . . . . . . . . . . . . . 15 𝑍 = (2nd𝑃)
1814, 15, 16, 17oeeui 8319 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1913, 18mpbiri 261 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
209, 19syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
2120simpld 498 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)))
2221simp1d 1144 . . . . . . . . . 10 (𝜑𝑋 ∈ On)
23 oecl 8253 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
242, 22, 23syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐴o 𝑋) ∈ On)
2521simp2d 1145 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐴 ∖ 1o))
2625eldifad 3869 . . . . . . . . . 10 (𝜑𝑌𝐴)
27 onelon 6227 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
282, 26, 27syl2anc 587 . . . . . . . . 9 (𝜑𝑌 ∈ On)
29 dif1o 8216 . . . . . . . . . . . 12 (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌𝐴𝑌 ≠ ∅))
3029simprbi 500 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅)
3125, 30syl 17 . . . . . . . . . 10 (𝜑𝑌 ≠ ∅)
32 on0eln0 6257 . . . . . . . . . . 11 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3328, 32syl 17 . . . . . . . . . 10 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
3431, 33mpbird 260 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
35 omword1 8290 . . . . . . . . 9 ((((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
3624, 28, 34, 35syl21anc 838 . . . . . . . 8 (𝜑 → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
37 omcl 8252 . . . . . . . . . . 11 (((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3824, 28, 37syl2anc 587 . . . . . . . . . 10 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3921simp3d 1146 . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝐴o 𝑋))
40 onelon 6227 . . . . . . . . . . 11 (((𝐴o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴o 𝑋)) → 𝑍 ∈ On)
4124, 39, 40syl2anc 587 . . . . . . . . . 10 (𝜑𝑍 ∈ On)
42 oaword1 8269 . . . . . . . . . 10 ((((𝐴o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4338, 41, 42syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4420simprd 499 . . . . . . . . 9 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)
4543, 44sseqtrd 3931 . . . . . . . 8 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ 𝐶)
4636, 45sstrd 3901 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ⊆ 𝐶)
47 oecl 8253 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
482, 3, 47syl2anc 587 . . . . . . . 8 (𝜑 → (𝐴o 𝐵) ∈ On)
49 ontr2 6249 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ (𝐴o 𝐵) ∈ On) → (((𝐴o 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴o 𝐵)) → (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5024, 48, 49syl2anc 587 . . . . . . 7 (𝜑 → (((𝐴o 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴o 𝐵)) → (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5146, 6, 50mp2and 699 . . . . . 6 (𝜑 → (𝐴o 𝑋) ∈ (𝐴o 𝐵))
529simpld 498 . . . . . . 7 (𝜑𝐴 ∈ (On ∖ 2o))
53 oeord 8305 . . . . . . 7 ((𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑋𝐵 ↔ (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5422, 3, 52, 53syl3anc 1373 . . . . . 6 (𝜑 → (𝑋𝐵 ↔ (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5551, 54mpbird 260 . . . . 5 (𝜑𝑋𝐵)
562adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ On)
573adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐵 ∈ On)
58 suppssdm 7908 . . . . . . . . . . . . . . 15 (𝐺 supp ∅) ⊆ dom 𝐺
591, 2, 3cantnfs 9270 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
604, 59mpbid 235 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
6160simpld 498 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐵𝐴)
6258, 61fssdm 6554 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
6362sselda 3891 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝐵)
64 onelon 6227 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6557, 63, 64syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ On)
66 oecl 8253 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴o 𝑥) ∈ On)
6756, 65, 66syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ∈ On)
6861adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺:𝐵𝐴)
6968, 63ffvelrnd 6894 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ 𝐴)
70 onelon 6227 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺𝑥) ∈ 𝐴) → (𝐺𝑥) ∈ On)
7156, 69, 70syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ On)
7261ffnd 6535 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐵)
738elexd 3421 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
74 elsuppfn 7902 . . . . . . . . . . . . . 14 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7572, 3, 73, 74syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7675simplbda 503 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ≠ ∅)
77 on0eln0 6257 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ On → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
7871, 77syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
7976, 78mpbird 260 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ∅ ∈ (𝐺𝑥))
80 omword1 8290 . . . . . . . . . . 11 ((((𝐴o 𝑥) ∈ On ∧ (𝐺𝑥) ∈ On) ∧ ∅ ∈ (𝐺𝑥)) → (𝐴o 𝑥) ⊆ ((𝐴o 𝑥) ·o (𝐺𝑥)))
8167, 71, 79, 80syl21anc 838 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ⊆ ((𝐴o 𝑥) ·o (𝐺𝑥)))
82 eqid 2734 . . . . . . . . . . . 12 OrdIso( E , (𝐺 supp ∅)) = OrdIso( E , (𝐺 supp ∅))
834adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺𝑆)
84 eqid 2734 . . . . . . . . . . . 12 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅)
851, 56, 57, 82, 83, 84, 63cantnfle 9275 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴o 𝑥) ·o (𝐺𝑥)) ⊆ ((𝐴 CNF 𝐵)‘𝐺))
86 cantnf.v . . . . . . . . . . . 12 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
8786adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
8885, 87sseqtrd 3931 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴o 𝑥) ·o (𝐺𝑥)) ⊆ 𝑍)
8981, 88sstrd 3901 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ⊆ 𝑍)
9039adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑍 ∈ (𝐴o 𝑋))
9124adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑋) ∈ On)
92 ontr2 6249 . . . . . . . . . 10 (((𝐴o 𝑥) ∈ On ∧ (𝐴o 𝑋) ∈ On) → (((𝐴o 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴o 𝑋)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9367, 91, 92syl2anc 587 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (((𝐴o 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴o 𝑋)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9489, 90, 93mp2and 699 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋))
9522adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑋 ∈ On)
9652adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ (On ∖ 2o))
97 oeord 8305 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑥𝑋 ↔ (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9865, 95, 96, 97syl3anc 1373 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝑥𝑋 ↔ (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9994, 98mpbird 260 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝑋)
10099ex 416 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) → 𝑥𝑋))
101100ssrdv 3897 . . . . 5 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
102 cantnf.f . . . . 5 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1031, 2, 3, 4, 55, 26, 101, 102cantnfp1 9285 . . . 4 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
104103simprd 499 . . 3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
10586oveq2d 7218 . . 3 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)) = (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
106104, 105, 443eqtrd 2778 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = 𝐶)
1071, 2, 3cantnff 9278 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
108107ffnd 6535 . . 3 (𝜑 → (𝐴 CNF 𝐵) Fn 𝑆)
109103simpld 498 . . 3 (𝜑𝐹𝑆)
110 fnfvelrn 6890 . . 3 (((𝐴 CNF 𝐵) Fn 𝑆𝐹𝑆) → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
111108, 109, 110syl2anc 587 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
112106, 111eqeltrrd 2835 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  {crab 3058  Vcvv 3401  cdif 3854  wss 3857  c0 4227  ifcif 4429  cop 4537   cuni 4809   cint 4849   class class class wbr 5043  {copab 5105  cmpt 5124   E cep 5448  dom cdm 5540  ran crn 5541  Oncon0 6202  cio 6325   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  cmpo 7204  1st c1st 7748  2nd c2nd 7749   supp csupp 7892  seqωcseqom 8172  1oc1o 8184  2oc2o 8185   +o coa 8188   ·o comu 8189  o coe 8190   finSupp cfsupp 8974  OrdIsocoi 9114   CNF ccnf 9265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-seqom 8173  df-1o 8191  df-2o 8192  df-oadd 8195  df-omul 8196  df-oexp 8197  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-oi 9115  df-cnf 9266
This theorem is referenced by:  cantnflem4  9296
  Copyright terms: Public domain W3C validator