MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem3 Structured version   Visualization version   GIF version

Theorem cantnflem3 9587
Description: Lemma for cantnf 9589. Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than 𝐶 has a normal form, we can use oeeu 8521 to factor 𝐶 into the form ((𝐴o 𝑋) ·o 𝑌) +o 𝑍 where 0 < 𝑌 < 𝐴 and 𝑍 < (𝐴o 𝑋) (and a fortiori 𝑋 < 𝐵). Then since 𝑍 < (𝐴o 𝑋) ≤ (𝐴o 𝑋) ·o 𝑌𝐶, 𝑍 has a normal form, and by appending the term (𝐴o 𝑋) ·o 𝑌 using cantnfp1 9577 we get a normal form for 𝐶. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
cantnf.g (𝜑𝐺𝑆)
cantnf.v (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
cantnf.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnflem3 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑡,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝑡,𝑎,𝐴,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑡   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑡,𝑥,𝑦,𝑧   𝑡,𝑍,𝑥,𝑦,𝑧   𝐺,𝑐,𝑡,𝑤,𝑥,𝑦,𝑧   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑡,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝐶(𝑡)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑡,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝐹(𝑡,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 cantnf.g . . . . 5 (𝜑𝐺𝑆)
5 oemapval.t . . . . . . . . . . . . . 14 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴o 𝐵))
7 cantnf.s . . . . . . . . . . . . . 14 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
8 cantnf.e . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ 𝐶)
91, 2, 3, 5, 6, 7, 8cantnflem2 9586 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
10 eqid 2729 . . . . . . . . . . . . . . 15 𝑋 = 𝑋
11 eqid 2729 . . . . . . . . . . . . . . 15 𝑌 = 𝑌
12 eqid 2729 . . . . . . . . . . . . . . 15 𝑍 = 𝑍
1310, 11, 123pm3.2i 1340 . . . . . . . . . . . . . 14 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
14 cantnf.x . . . . . . . . . . . . . . 15 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
15 cantnf.p . . . . . . . . . . . . . . 15 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
16 cantnf.y . . . . . . . . . . . . . . 15 𝑌 = (1st𝑃)
17 cantnf.z . . . . . . . . . . . . . . 15 𝑍 = (2nd𝑃)
1814, 15, 16, 17oeeui 8520 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1913, 18mpbiri 258 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
209, 19syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
2120simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)))
2221simp1d 1142 . . . . . . . . . 10 (𝜑𝑋 ∈ On)
23 oecl 8455 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
242, 22, 23syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴o 𝑋) ∈ On)
2521simp2d 1143 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐴 ∖ 1o))
2625eldifad 3915 . . . . . . . . . 10 (𝜑𝑌𝐴)
27 onelon 6332 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
282, 26, 27syl2anc 584 . . . . . . . . 9 (𝜑𝑌 ∈ On)
29 dif1o 8418 . . . . . . . . . . . 12 (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌𝐴𝑌 ≠ ∅))
3029simprbi 496 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅)
3125, 30syl 17 . . . . . . . . . 10 (𝜑𝑌 ≠ ∅)
32 on0eln0 6364 . . . . . . . . . . 11 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3328, 32syl 17 . . . . . . . . . 10 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
3431, 33mpbird 257 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝑌)
35 omword1 8491 . . . . . . . . 9 ((((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
3624, 28, 34, 35syl21anc 837 . . . . . . . 8 (𝜑 → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
37 omcl 8454 . . . . . . . . . . 11 (((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3824, 28, 37syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3921simp3d 1144 . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝐴o 𝑋))
40 onelon 6332 . . . . . . . . . . 11 (((𝐴o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴o 𝑋)) → 𝑍 ∈ On)
4124, 39, 40syl2anc 584 . . . . . . . . . 10 (𝜑𝑍 ∈ On)
42 oaword1 8470 . . . . . . . . . 10 ((((𝐴o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4338, 41, 42syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4420simprd 495 . . . . . . . . 9 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)
4543, 44sseqtrd 3972 . . . . . . . 8 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ 𝐶)
4636, 45sstrd 3946 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ⊆ 𝐶)
47 oecl 8455 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
482, 3, 47syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴o 𝐵) ∈ On)
49 ontr2 6355 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ (𝐴o 𝐵) ∈ On) → (((𝐴o 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴o 𝐵)) → (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5024, 48, 49syl2anc 584 . . . . . . 7 (𝜑 → (((𝐴o 𝑋) ⊆ 𝐶𝐶 ∈ (𝐴o 𝐵)) → (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5146, 6, 50mp2and 699 . . . . . 6 (𝜑 → (𝐴o 𝑋) ∈ (𝐴o 𝐵))
529simpld 494 . . . . . . 7 (𝜑𝐴 ∈ (On ∖ 2o))
53 oeord 8506 . . . . . . 7 ((𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑋𝐵 ↔ (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5422, 3, 52, 53syl3anc 1373 . . . . . 6 (𝜑 → (𝑋𝐵 ↔ (𝐴o 𝑋) ∈ (𝐴o 𝐵)))
5551, 54mpbird 257 . . . . 5 (𝜑𝑋𝐵)
562adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ On)
573adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐵 ∈ On)
58 suppssdm 8110 . . . . . . . . . . . . . . 15 (𝐺 supp ∅) ⊆ dom 𝐺
591, 2, 3cantnfs 9562 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
604, 59mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
6160simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐵𝐴)
6258, 61fssdm 6671 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
6362sselda 3935 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝐵)
64 onelon 6332 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6557, 63, 64syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥 ∈ On)
66 oecl 8455 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴o 𝑥) ∈ On)
6756, 65, 66syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ∈ On)
6861adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺:𝐵𝐴)
6968, 63ffvelcdmd 7019 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ 𝐴)
70 onelon 6332 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐺𝑥) ∈ 𝐴) → (𝐺𝑥) ∈ On)
7156, 69, 70syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ∈ On)
7261ffnd 6653 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn 𝐵)
738elexd 3460 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
74 elsuppfn 8103 . . . . . . . . . . . . . 14 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7572, 3, 73, 74syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) ↔ (𝑥𝐵 ∧ (𝐺𝑥) ≠ ∅)))
7675simplbda 499 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐺𝑥) ≠ ∅)
77 on0eln0 6364 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ On → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
7871, 77syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (∅ ∈ (𝐺𝑥) ↔ (𝐺𝑥) ≠ ∅))
7976, 78mpbird 257 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ∅ ∈ (𝐺𝑥))
80 omword1 8491 . . . . . . . . . . 11 ((((𝐴o 𝑥) ∈ On ∧ (𝐺𝑥) ∈ On) ∧ ∅ ∈ (𝐺𝑥)) → (𝐴o 𝑥) ⊆ ((𝐴o 𝑥) ·o (𝐺𝑥)))
8167, 71, 79, 80syl21anc 837 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ⊆ ((𝐴o 𝑥) ·o (𝐺𝑥)))
82 eqid 2729 . . . . . . . . . . . 12 OrdIso( E , (𝐺 supp ∅)) = OrdIso( E , (𝐺 supp ∅))
834adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐺𝑆)
84 eqid 2729 . . . . . . . . . . . 12 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅)
851, 56, 57, 82, 83, 84, 63cantnfle 9567 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴o 𝑥) ·o (𝐺𝑥)) ⊆ ((𝐴 CNF 𝐵)‘𝐺))
86 cantnf.v . . . . . . . . . . . 12 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
8786adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍)
8885, 87sseqtrd 3972 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → ((𝐴o 𝑥) ·o (𝐺𝑥)) ⊆ 𝑍)
8981, 88sstrd 3946 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ⊆ 𝑍)
9039adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑍 ∈ (𝐴o 𝑋))
9124adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑋) ∈ On)
92 ontr2 6355 . . . . . . . . . 10 (((𝐴o 𝑥) ∈ On ∧ (𝐴o 𝑋) ∈ On) → (((𝐴o 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴o 𝑋)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9367, 91, 92syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (((𝐴o 𝑥) ⊆ 𝑍𝑍 ∈ (𝐴o 𝑋)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9489, 90, 93mp2and 699 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝐴o 𝑥) ∈ (𝐴o 𝑋))
9522adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑋 ∈ On)
9652adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝐴 ∈ (On ∖ 2o))
97 oeord 8506 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑥𝑋 ↔ (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9865, 95, 96, 97syl3anc 1373 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → (𝑥𝑋 ↔ (𝐴o 𝑥) ∈ (𝐴o 𝑋)))
9994, 98mpbird 257 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 supp ∅)) → 𝑥𝑋)
10099ex 412 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 supp ∅) → 𝑥𝑋))
101100ssrdv 3941 . . . . 5 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
102 cantnf.f . . . . 5 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1031, 2, 3, 4, 55, 26, 101, 102cantnfp1 9577 . . . 4 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
104103simprd 495 . . 3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
10586oveq2d 7365 . . 3 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)) = (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
106104, 105, 443eqtrd 2768 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = 𝐶)
1071, 2, 3cantnff 9570 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
108107ffnd 6653 . . 3 (𝜑 → (𝐴 CNF 𝐵) Fn 𝑆)
109103simpld 494 . . 3 (𝜑𝐹𝑆)
110 fnfvelrn 7014 . . 3 (((𝐴 CNF 𝐵) Fn 𝑆𝐹𝑆) → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
111108, 109, 110syl2anc 584 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ran (𝐴 CNF 𝐵))
112106, 111eqeltrrd 2829 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284  ifcif 4476  cop 4583   cuni 4858   cint 4896   class class class wbr 5092  {copab 5154  cmpt 5173   E cep 5518  dom cdm 5619  ran crn 5620  Oncon0 6307  cio 6436   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   supp csupp 8093  seqωcseqom 8369  1oc1o 8381  2oc2o 8382   +o coa 8385   ·o comu 8386  o coe 8387   finSupp cfsupp 9251  OrdIsocoi 9401   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-cnf 9558
This theorem is referenced by:  cantnflem4  9588
  Copyright terms: Public domain W3C validator