MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Visualization version   GIF version

Theorem omabs 8689
Description: Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))

Proof of Theorem omabs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2830 . . . . . . . 8 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2 oveq2 7439 . . . . . . . . . 10 (𝑥 = ∅ → (ω ↑o 𝑥) = (ω ↑o ∅))
32oveq2d 7447 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o ∅)))
43, 2eqeq12d 2753 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
51, 4imbi12d 344 . . . . . . 7 (𝑥 = ∅ → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))))
6 eleq2 2830 . . . . . . . 8 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
7 oveq2 7439 . . . . . . . . . 10 (𝑥 = 𝑦 → (ω ↑o 𝑥) = (ω ↑o 𝑦))
87oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝑦)))
98, 7eqeq12d 2753 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
106, 9imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))))
11 eleq2 2830 . . . . . . . 8 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
12 oveq2 7439 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (ω ↑o 𝑥) = (ω ↑o suc 𝑦))
1312oveq2d 7447 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o suc 𝑦)))
1413, 12eqeq12d 2753 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
1511, 14imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
16 eleq2 2830 . . . . . . . 8 (𝑥 = 𝐵 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵))
17 oveq2 7439 . . . . . . . . . 10 (𝑥 = 𝐵 → (ω ↑o 𝑥) = (ω ↑o 𝐵))
1817oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝐵)))
1918, 17eqeq12d 2753 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵)))
2016, 19imbi12d 344 . . . . . . 7 (𝑥 = 𝐵 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
21 noel 4338 . . . . . . . . 9 ¬ ∅ ∈ ∅
2221pm2.21i 119 . . . . . . . 8 (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))
2322a1i 11 . . . . . . 7 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
24 simprl 771 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ω ∈ On)
25 simpll 767 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ ω)
26 simplr 769 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ∅ ∈ 𝐴)
27 omabslem 8688 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω)
2824, 25, 26, 27syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o ω) = ω)
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o ω) = ω)
30 suceq 6450 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → suc 𝑦 = suc ∅)
31 df-1o 8506 . . . . . . . . . . . . . . . . . 18 1o = suc ∅
3230, 31eqtr4di 2795 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → suc 𝑦 = 1o)
3332oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (ω ↑o suc 𝑦) = (ω ↑o 1o))
34 oe1 8582 . . . . . . . . . . . . . . . . 17 (ω ∈ On → (ω ↑o 1o) = ω)
3534ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 1o) = ω)
3633, 35sylan9eqr 2799 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (ω ↑o suc 𝑦) = ω)
3736oveq2d 7447 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ω))
3829, 37, 363eqtr4d 2787 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))
3938ex 412 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
4039a1dd 50 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
41 oveq1 7438 . . . . . . . . . . . . . 14 ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω))
42 oesuc 8565 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4342adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4443oveq2d 7447 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
45 nnon 7893 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ω → 𝐴 ∈ On)
4645ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ On)
47 oecl 8575 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o 𝑦) ∈ On)
4847adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 𝑦) ∈ On)
49 omass 8618 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ ω ∈ On) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5046, 48, 24, 49syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5144, 50eqtr4d 2780 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = ((𝐴 ·o (ω ↑o 𝑦)) ·o ω))
5251, 43eqeq12d 2753 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦) ↔ ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω)))
5341, 52imbitrrid 246 . . . . . . . . . . . . 13 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
5453imim2d 57 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
5554com23 86 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (∅ ∈ 𝑦 → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
56 simprr 773 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝑦 ∈ On)
57 on0eqel 6508 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5856, 57syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5940, 55, 58mpjaod 861 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
6059a1dd 50 . . . . . . . . 9 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6160anassrs 467 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6261expcom 413 . . . . . . 7 (𝑦 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))))
6345ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝐴 ∈ On)
64 simprl 771 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ On)
65 simprr 773 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → Lim 𝑥)
66 vex 3484 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
6765, 66jctil 519 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (𝑥 ∈ V ∧ Lim 𝑥))
68 limelon 6448 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6967, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝑥 ∈ On)
70 oecl 8575 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ↑o 𝑥) ∈ On)
7164, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (ω ↑o 𝑥) ∈ On)
7271adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
73 1onn 8678 . . . . . . . . . . . . . . . . 17 1o ∈ ω
74 ondif2 8540 . . . . . . . . . . . . . . . . 17 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
7564, 73, 74sylanblrc 590 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ (On ∖ 2o))
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
7767adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑥 ∈ V ∧ Lim 𝑥))
78 oelimcl 8638 . . . . . . . . . . . . . . 15 ((ω ∈ (On ∖ 2o) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (ω ↑o 𝑥))
7976, 77, 78syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → Lim (ω ↑o 𝑥))
80 omlim 8571 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ ((ω ↑o 𝑥) ∈ On ∧ Lim (ω ↑o 𝑥))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
8163, 72, 79, 80syl12anc 837 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
82 simplrl 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ On)
83 oelim2 8633 . . . . . . . . . . . . . . . . . . . 20 ((ω ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8482, 77, 83syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8584eleq2d 2827 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ 𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦)))
86 eliun 4995 . . . . . . . . . . . . . . . . . 18 (𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦))
8785, 86bitrdi 287 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
8869adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑥 ∈ On)
89 anass 468 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
90 onelon 6409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
91 on0eln0 6440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (∅ ∈ 𝑦𝑦 ≠ ∅))
9290, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → (∅ ∈ 𝑦𝑦 ≠ ∅))
9392pm5.32da 579 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ (𝑦𝑥𝑦 ≠ ∅)))
94 dif1o 8538 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥 ∖ 1o) ↔ (𝑦𝑥𝑦 ≠ ∅))
9593, 94bitr4di 289 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ 𝑦 ∈ (𝑥 ∖ 1o)))
9695anbi1d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9789, 96bitr3id 285 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → ((𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9897rexbidv2 3175 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
9988, 98syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
10087, 99bitr4d 282 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
101 r19.29 3114 . . . . . . . . . . . . . . . . . 18 ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
103102imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
104103anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
105104anasss 466 . . . . . . . . . . . . . . . . . . . 20 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
10671ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
107 eloni 6394 . . . . . . . . . . . . . . . . . . . . . . 23 ((ω ↑o 𝑥) ∈ On → Ord (ω ↑o 𝑥))
108106, 107syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → Ord (ω ↑o 𝑥))
109 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑦))
11064ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ On)
11169ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑥 ∈ On)
112 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦𝑥)
113111, 112, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦 ∈ On)
114110, 113, 47syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ On)
115 onelon 6409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ω ↑o 𝑦) ∈ On ∧ 𝑧 ∈ (ω ↑o 𝑦)) → 𝑧 ∈ On)
116114, 109, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ On)
11745ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝐴 ∈ On)
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝐴 ∈ On)
119 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ∅ ∈ 𝐴)
120119ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
121 omord2 8605 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
122116, 114, 118, 120, 121syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
123109, 122mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦)))
124 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
125123, 124eleqtrd 2843 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦))
12675ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
127 oeord 8626 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ (On ∖ 2o)) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
128113, 111, 126, 127syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
129112, 128mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ (ω ↑o 𝑥))
130 ontr1 6430 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ↑o 𝑥) ∈ On → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
131106, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
132125, 129, 131mp2and 699 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥))
133 ordelss 6400 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord (ω ↑o 𝑥) ∧ (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
134108, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
135134ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
136105, 135syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
137136rexlimdva 3155 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
138101, 137syl5 34 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
139138expdimp 452 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
140100, 139sylbid 240 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
141140ralrimiv 3145 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
142 iunss 5045 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥) ↔ ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
143141, 142sylibr 234 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
14481, 143eqsstrd 4018 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) ⊆ (ω ↑o 𝑥))
145 simpllr 776 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
146 omword2 8612 . . . . . . . . . . . . 13 ((((ω ↑o 𝑥) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
14772, 63, 145, 146syl21anc 838 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
148144, 147eqssd 4001 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))
149148ex 412 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
150149anassrs 467 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
151150a1dd 50 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))))
152151expcom 413 . . . . . . 7 (Lim 𝑥 → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))))
1535, 10, 15, 20, 23, 62, 152tfinds3 7886 . . . . . 6 (𝐵 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
154153com12 32 . . . . 5 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
155154adantrr 717 . . . 4 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
156155imp32 418 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
157156an32s 652 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
158 nnm0 8643 . . . 4 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
159158ad3antrrr 730 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o ∅) = ∅)
160 fnoe 8548 . . . . . . 7 o Fn (On × On)
161 fndm 6671 . . . . . . 7 ( ↑o Fn (On × On) → dom ↑o = (On × On))
162160, 161ax-mp 5 . . . . . 6 dom ↑o = (On × On)
163162ndmov 7617 . . . . 5 (¬ (ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) = ∅)
164163adantl 481 . . . 4 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (ω ↑o 𝐵) = ∅)
165164oveq2d 7447 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (𝐴 ·o ∅))
166159, 165, 1643eqtr4d 2787 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
167157, 166pm2.61dan 813 1 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cdif 3948  wss 3951  c0 4333   ciun 4991   × cxp 5683  dom cdm 5685  Ord word 6383  Oncon0 6384  Lim wlim 6385  suc csuc 6386   Fn wfn 6556  (class class class)co 7431  ωcom 7887  1oc1o 8499  2oc2o 8500   ·o comu 8504  o coe 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-oexp 8512
This theorem is referenced by:  cnfcom3  9744  omabs2  43345
  Copyright terms: Public domain W3C validator