MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Visualization version   GIF version

Theorem omabs 8618
Description: Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))

Proof of Theorem omabs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2818 . . . . . . . 8 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2 oveq2 7398 . . . . . . . . . 10 (𝑥 = ∅ → (ω ↑o 𝑥) = (ω ↑o ∅))
32oveq2d 7406 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o ∅)))
43, 2eqeq12d 2746 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
51, 4imbi12d 344 . . . . . . 7 (𝑥 = ∅ → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))))
6 eleq2 2818 . . . . . . . 8 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
7 oveq2 7398 . . . . . . . . . 10 (𝑥 = 𝑦 → (ω ↑o 𝑥) = (ω ↑o 𝑦))
87oveq2d 7406 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝑦)))
98, 7eqeq12d 2746 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
106, 9imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))))
11 eleq2 2818 . . . . . . . 8 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
12 oveq2 7398 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (ω ↑o 𝑥) = (ω ↑o suc 𝑦))
1312oveq2d 7406 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o suc 𝑦)))
1413, 12eqeq12d 2746 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
1511, 14imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
16 eleq2 2818 . . . . . . . 8 (𝑥 = 𝐵 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵))
17 oveq2 7398 . . . . . . . . . 10 (𝑥 = 𝐵 → (ω ↑o 𝑥) = (ω ↑o 𝐵))
1817oveq2d 7406 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝐵)))
1918, 17eqeq12d 2746 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵)))
2016, 19imbi12d 344 . . . . . . 7 (𝑥 = 𝐵 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
21 noel 4304 . . . . . . . . 9 ¬ ∅ ∈ ∅
2221pm2.21i 119 . . . . . . . 8 (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))
2322a1i 11 . . . . . . 7 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
24 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ω ∈ On)
25 simpll 766 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ ω)
26 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ∅ ∈ 𝐴)
27 omabslem 8617 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω)
2824, 25, 26, 27syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o ω) = ω)
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o ω) = ω)
30 suceq 6403 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → suc 𝑦 = suc ∅)
31 df-1o 8437 . . . . . . . . . . . . . . . . . 18 1o = suc ∅
3230, 31eqtr4di 2783 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → suc 𝑦 = 1o)
3332oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (ω ↑o suc 𝑦) = (ω ↑o 1o))
34 oe1 8511 . . . . . . . . . . . . . . . . 17 (ω ∈ On → (ω ↑o 1o) = ω)
3534ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 1o) = ω)
3633, 35sylan9eqr 2787 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (ω ↑o suc 𝑦) = ω)
3736oveq2d 7406 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ω))
3829, 37, 363eqtr4d 2775 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))
3938ex 412 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
4039a1dd 50 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
41 oveq1 7397 . . . . . . . . . . . . . 14 ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω))
42 oesuc 8494 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4342adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4443oveq2d 7406 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
45 nnon 7851 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ω → 𝐴 ∈ On)
4645ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ On)
47 oecl 8504 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o 𝑦) ∈ On)
4847adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 𝑦) ∈ On)
49 omass 8547 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ ω ∈ On) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5046, 48, 24, 49syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5144, 50eqtr4d 2768 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = ((𝐴 ·o (ω ↑o 𝑦)) ·o ω))
5251, 43eqeq12d 2746 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦) ↔ ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω)))
5341, 52imbitrrid 246 . . . . . . . . . . . . 13 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
5453imim2d 57 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
5554com23 86 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (∅ ∈ 𝑦 → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
56 simprr 772 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝑦 ∈ On)
57 on0eqel 6461 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5856, 57syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5940, 55, 58mpjaod 860 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
6059a1dd 50 . . . . . . . . 9 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6160anassrs 467 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6261expcom 413 . . . . . . 7 (𝑦 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))))
6345ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝐴 ∈ On)
64 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ On)
65 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → Lim 𝑥)
66 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
6765, 66jctil 519 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (𝑥 ∈ V ∧ Lim 𝑥))
68 limelon 6400 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6967, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝑥 ∈ On)
70 oecl 8504 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ↑o 𝑥) ∈ On)
7164, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (ω ↑o 𝑥) ∈ On)
7271adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
73 1onn 8607 . . . . . . . . . . . . . . . . 17 1o ∈ ω
74 ondif2 8469 . . . . . . . . . . . . . . . . 17 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
7564, 73, 74sylanblrc 590 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ (On ∖ 2o))
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
7767adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑥 ∈ V ∧ Lim 𝑥))
78 oelimcl 8567 . . . . . . . . . . . . . . 15 ((ω ∈ (On ∖ 2o) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (ω ↑o 𝑥))
7976, 77, 78syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → Lim (ω ↑o 𝑥))
80 omlim 8500 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ ((ω ↑o 𝑥) ∈ On ∧ Lim (ω ↑o 𝑥))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
8163, 72, 79, 80syl12anc 836 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
82 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ On)
83 oelim2 8562 . . . . . . . . . . . . . . . . . . . 20 ((ω ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8482, 77, 83syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8584eleq2d 2815 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ 𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦)))
86 eliun 4962 . . . . . . . . . . . . . . . . . 18 (𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦))
8785, 86bitrdi 287 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
8869adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑥 ∈ On)
89 anass 468 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
90 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
91 on0eln0 6392 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (∅ ∈ 𝑦𝑦 ≠ ∅))
9290, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → (∅ ∈ 𝑦𝑦 ≠ ∅))
9392pm5.32da 579 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ (𝑦𝑥𝑦 ≠ ∅)))
94 dif1o 8467 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥 ∖ 1o) ↔ (𝑦𝑥𝑦 ≠ ∅))
9593, 94bitr4di 289 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ 𝑦 ∈ (𝑥 ∖ 1o)))
9695anbi1d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9789, 96bitr3id 285 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → ((𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9897rexbidv2 3154 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
9988, 98syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
10087, 99bitr4d 282 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
101 r19.29 3095 . . . . . . . . . . . . . . . . . 18 ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
103102imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
104103anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
105104anasss 466 . . . . . . . . . . . . . . . . . . . 20 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
10671ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
107 eloni 6345 . . . . . . . . . . . . . . . . . . . . . . 23 ((ω ↑o 𝑥) ∈ On → Ord (ω ↑o 𝑥))
108106, 107syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → Ord (ω ↑o 𝑥))
109 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑦))
11064ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ On)
11169ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑥 ∈ On)
112 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦𝑥)
113111, 112, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦 ∈ On)
114110, 113, 47syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ On)
115 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ω ↑o 𝑦) ∈ On ∧ 𝑧 ∈ (ω ↑o 𝑦)) → 𝑧 ∈ On)
116114, 109, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ On)
11745ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝐴 ∈ On)
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝐴 ∈ On)
119 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ∅ ∈ 𝐴)
120119ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
121 omord2 8534 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
122116, 114, 118, 120, 121syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
123109, 122mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦)))
124 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
125123, 124eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦))
12675ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
127 oeord 8555 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ (On ∖ 2o)) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
128113, 111, 126, 127syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
129112, 128mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ (ω ↑o 𝑥))
130 ontr1 6382 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ↑o 𝑥) ∈ On → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
131106, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
132125, 129, 131mp2and 699 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥))
133 ordelss 6351 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord (ω ↑o 𝑥) ∧ (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
134108, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
135134ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
136105, 135syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
137136rexlimdva 3135 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
138101, 137syl5 34 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
139138expdimp 452 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
140100, 139sylbid 240 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
141140ralrimiv 3125 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
142 iunss 5012 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥) ↔ ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
143141, 142sylibr 234 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
14481, 143eqsstrd 3984 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) ⊆ (ω ↑o 𝑥))
145 simpllr 775 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
146 omword2 8541 . . . . . . . . . . . . 13 ((((ω ↑o 𝑥) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
14772, 63, 145, 146syl21anc 837 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
148144, 147eqssd 3967 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))
149148ex 412 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
150149anassrs 467 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
151150a1dd 50 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))))
152151expcom 413 . . . . . . 7 (Lim 𝑥 → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))))
1535, 10, 15, 20, 23, 62, 152tfinds3 7844 . . . . . 6 (𝐵 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
154153com12 32 . . . . 5 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
155154adantrr 717 . . . 4 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
156155imp32 418 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
157156an32s 652 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
158 nnm0 8572 . . . 4 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
159158ad3antrrr 730 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o ∅) = ∅)
160 fnoe 8477 . . . . . . 7 o Fn (On × On)
161 fndm 6624 . . . . . . 7 ( ↑o Fn (On × On) → dom ↑o = (On × On))
162160, 161ax-mp 5 . . . . . 6 dom ↑o = (On × On)
163162ndmov 7576 . . . . 5 (¬ (ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) = ∅)
164163adantl 481 . . . 4 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (ω ↑o 𝐵) = ∅)
165164oveq2d 7406 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (𝐴 ·o ∅))
166159, 165, 1643eqtr4d 2775 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
167157, 166pm2.61dan 812 1 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  wss 3917  c0 4299   ciun 4958   × cxp 5639  dom cdm 5641  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337   Fn wfn 6509  (class class class)co 7390  ωcom 7845  1oc1o 8430  2oc2o 8431   ·o comu 8435  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by:  cnfcom3  9664  omabs2  43328
  Copyright terms: Public domain W3C validator