MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Visualization version   GIF version

Theorem omabs 8597
Description: Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))

Proof of Theorem omabs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2826 . . . . . . . 8 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2 oveq2 7365 . . . . . . . . . 10 (𝑥 = ∅ → (ω ↑o 𝑥) = (ω ↑o ∅))
32oveq2d 7373 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o ∅)))
43, 2eqeq12d 2752 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
51, 4imbi12d 344 . . . . . . 7 (𝑥 = ∅ → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))))
6 eleq2 2826 . . . . . . . 8 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
7 oveq2 7365 . . . . . . . . . 10 (𝑥 = 𝑦 → (ω ↑o 𝑥) = (ω ↑o 𝑦))
87oveq2d 7373 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝑦)))
98, 7eqeq12d 2752 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
106, 9imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))))
11 eleq2 2826 . . . . . . . 8 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
12 oveq2 7365 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (ω ↑o 𝑥) = (ω ↑o suc 𝑦))
1312oveq2d 7373 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o suc 𝑦)))
1413, 12eqeq12d 2752 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
1511, 14imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
16 eleq2 2826 . . . . . . . 8 (𝑥 = 𝐵 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵))
17 oveq2 7365 . . . . . . . . . 10 (𝑥 = 𝐵 → (ω ↑o 𝑥) = (ω ↑o 𝐵))
1817oveq2d 7373 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝐵)))
1918, 17eqeq12d 2752 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵)))
2016, 19imbi12d 344 . . . . . . 7 (𝑥 = 𝐵 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
21 noel 4290 . . . . . . . . 9 ¬ ∅ ∈ ∅
2221pm2.21i 119 . . . . . . . 8 (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))
2322a1i 11 . . . . . . 7 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
24 simprl 769 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ω ∈ On)
25 simpll 765 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ ω)
26 simplr 767 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ∅ ∈ 𝐴)
27 omabslem 8596 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω)
2824, 25, 26, 27syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o ω) = ω)
2928adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o ω) = ω)
30 suceq 6383 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → suc 𝑦 = suc ∅)
31 df-1o 8412 . . . . . . . . . . . . . . . . . 18 1o = suc ∅
3230, 31eqtr4di 2794 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → suc 𝑦 = 1o)
3332oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (ω ↑o suc 𝑦) = (ω ↑o 1o))
34 oe1 8491 . . . . . . . . . . . . . . . . 17 (ω ∈ On → (ω ↑o 1o) = ω)
3534ad2antrl 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 1o) = ω)
3633, 35sylan9eqr 2798 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (ω ↑o suc 𝑦) = ω)
3736oveq2d 7373 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ω))
3829, 37, 363eqtr4d 2786 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))
3938ex 413 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
4039a1dd 50 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
41 oveq1 7364 . . . . . . . . . . . . . 14 ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω))
42 oesuc 8473 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4342adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4443oveq2d 7373 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
45 nnon 7808 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ω → 𝐴 ∈ On)
4645ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ On)
47 oecl 8483 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o 𝑦) ∈ On)
4847adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 𝑦) ∈ On)
49 omass 8527 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ ω ∈ On) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5046, 48, 24, 49syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5144, 50eqtr4d 2779 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = ((𝐴 ·o (ω ↑o 𝑦)) ·o ω))
5251, 43eqeq12d 2752 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦) ↔ ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω)))
5341, 52syl5ibr 245 . . . . . . . . . . . . 13 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
5453imim2d 57 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
5554com23 86 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (∅ ∈ 𝑦 → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
56 simprr 771 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝑦 ∈ On)
57 on0eqel 6441 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5856, 57syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5940, 55, 58mpjaod 858 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
6059a1dd 50 . . . . . . . . 9 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6160anassrs 468 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6261expcom 414 . . . . . . 7 (𝑦 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))))
6345ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝐴 ∈ On)
64 simprl 769 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ On)
65 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → Lim 𝑥)
66 vex 3449 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
6765, 66jctil 520 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (𝑥 ∈ V ∧ Lim 𝑥))
68 limelon 6381 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6967, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝑥 ∈ On)
70 oecl 8483 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ↑o 𝑥) ∈ On)
7164, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (ω ↑o 𝑥) ∈ On)
7271adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
73 1onn 8586 . . . . . . . . . . . . . . . . 17 1o ∈ ω
74 ondif2 8448 . . . . . . . . . . . . . . . . 17 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
7564, 73, 74sylanblrc 590 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ (On ∖ 2o))
7675adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
7767adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑥 ∈ V ∧ Lim 𝑥))
78 oelimcl 8547 . . . . . . . . . . . . . . 15 ((ω ∈ (On ∖ 2o) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (ω ↑o 𝑥))
7976, 77, 78syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → Lim (ω ↑o 𝑥))
80 omlim 8479 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ ((ω ↑o 𝑥) ∈ On ∧ Lim (ω ↑o 𝑥))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
8163, 72, 79, 80syl12anc 835 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
82 simplrl 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ On)
83 oelim2 8542 . . . . . . . . . . . . . . . . . . . 20 ((ω ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8482, 77, 83syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8584eleq2d 2823 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ 𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦)))
86 eliun 4958 . . . . . . . . . . . . . . . . . 18 (𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦))
8785, 86bitrdi 286 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
8869adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑥 ∈ On)
89 anass 469 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
90 onelon 6342 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
91 on0eln0 6373 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (∅ ∈ 𝑦𝑦 ≠ ∅))
9290, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → (∅ ∈ 𝑦𝑦 ≠ ∅))
9392pm5.32da 579 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ (𝑦𝑥𝑦 ≠ ∅)))
94 dif1o 8446 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥 ∖ 1o) ↔ (𝑦𝑥𝑦 ≠ ∅))
9593, 94bitr4di 288 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ 𝑦 ∈ (𝑥 ∖ 1o)))
9695anbi1d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9789, 96bitr3id 284 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → ((𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9897rexbidv2 3171 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
9988, 98syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
10087, 99bitr4d 281 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
101 r19.29 3117 . . . . . . . . . . . . . . . . . 18 ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
103102imp 407 . . . . . . . . . . . . . . . . . . . . . 22 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
104103anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
105104anasss 467 . . . . . . . . . . . . . . . . . . . 20 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
10671ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
107 eloni 6327 . . . . . . . . . . . . . . . . . . . . . . 23 ((ω ↑o 𝑥) ∈ On → Ord (ω ↑o 𝑥))
108106, 107syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → Ord (ω ↑o 𝑥))
109 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑦))
11064ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ On)
11169ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑥 ∈ On)
112 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦𝑥)
113111, 112, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦 ∈ On)
114110, 113, 47syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ On)
115 onelon 6342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ω ↑o 𝑦) ∈ On ∧ 𝑧 ∈ (ω ↑o 𝑦)) → 𝑧 ∈ On)
116114, 109, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ On)
11745ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝐴 ∈ On)
118117ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝐴 ∈ On)
119 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ∅ ∈ 𝐴)
120119ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
121 omord2 8514 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
122116, 114, 118, 120, 121syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
123109, 122mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦)))
124 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
125123, 124eleqtrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦))
12675ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
127 oeord 8535 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ (On ∖ 2o)) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
128113, 111, 126, 127syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
129112, 128mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ (ω ↑o 𝑥))
130 ontr1 6363 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ↑o 𝑥) ∈ On → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
131106, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
132125, 129, 131mp2and 697 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥))
133 ordelss 6333 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord (ω ↑o 𝑥) ∧ (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
134108, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
135134ex 413 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
136105, 135syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
137136rexlimdva 3152 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
138101, 137syl5 34 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
139138expdimp 453 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
140100, 139sylbid 239 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
141140ralrimiv 3142 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
142 iunss 5005 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥) ↔ ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
143141, 142sylibr 233 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
14481, 143eqsstrd 3982 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) ⊆ (ω ↑o 𝑥))
145 simpllr 774 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
146 omword2 8521 . . . . . . . . . . . . 13 ((((ω ↑o 𝑥) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
14772, 63, 145, 146syl21anc 836 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
148144, 147eqssd 3961 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))
149148ex 413 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
150149anassrs 468 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
151150a1dd 50 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))))
152151expcom 414 . . . . . . 7 (Lim 𝑥 → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))))
1535, 10, 15, 20, 23, 62, 152tfinds3 7801 . . . . . 6 (𝐵 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
154153com12 32 . . . . 5 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
155154adantrr 715 . . . 4 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
156155imp32 419 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
157156an32s 650 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
158 nnm0 8552 . . . 4 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
159158ad3antrrr 728 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o ∅) = ∅)
160 fnoe 8456 . . . . . . 7 o Fn (On × On)
161 fndm 6605 . . . . . . 7 ( ↑o Fn (On × On) → dom ↑o = (On × On))
162160, 161ax-mp 5 . . . . . 6 dom ↑o = (On × On)
163162ndmov 7538 . . . . 5 (¬ (ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) = ∅)
164163adantl 482 . . . 4 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (ω ↑o 𝐵) = ∅)
165164oveq2d 7373 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (𝐴 ·o ∅))
166159, 165, 1643eqtr4d 2786 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
167157, 166pm2.61dan 811 1 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  c0 4282   ciun 4954   × cxp 5631  dom cdm 5633  Ord word 6316  Oncon0 6317  Lim wlim 6318  suc csuc 6319   Fn wfn 6491  (class class class)co 7357  ωcom 7802  1oc1o 8405  2oc2o 8406   ·o comu 8410  o coe 8411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-oexp 8418
This theorem is referenced by:  cnfcom3  9640  omabs2  41651
  Copyright terms: Public domain W3C validator