MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Visualization version   GIF version

Theorem omabs 8707
Description: Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))

Proof of Theorem omabs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2833 . . . . . . . 8 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2 oveq2 7456 . . . . . . . . . 10 (𝑥 = ∅ → (ω ↑o 𝑥) = (ω ↑o ∅))
32oveq2d 7464 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o ∅)))
43, 2eqeq12d 2756 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
51, 4imbi12d 344 . . . . . . 7 (𝑥 = ∅ → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))))
6 eleq2 2833 . . . . . . . 8 (𝑥 = 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦))
7 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝑦 → (ω ↑o 𝑥) = (ω ↑o 𝑦))
87oveq2d 7464 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝑦)))
98, 7eqeq12d 2756 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
106, 9imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))))
11 eleq2 2833 . . . . . . . 8 (𝑥 = suc 𝑦 → (∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦))
12 oveq2 7456 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (ω ↑o 𝑥) = (ω ↑o suc 𝑦))
1312oveq2d 7464 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o suc 𝑦)))
1413, 12eqeq12d 2756 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
1511, 14imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
16 eleq2 2833 . . . . . . . 8 (𝑥 = 𝐵 → (∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵))
17 oveq2 7456 . . . . . . . . . 10 (𝑥 = 𝐵 → (ω ↑o 𝑥) = (ω ↑o 𝐵))
1817oveq2d 7464 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐴 ·o (ω ↑o 𝑥)) = (𝐴 ·o (ω ↑o 𝐵)))
1918, 17eqeq12d 2756 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥) ↔ (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵)))
2016, 19imbi12d 344 . . . . . . 7 (𝑥 = 𝐵 → ((∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)) ↔ (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
21 noel 4360 . . . . . . . . 9 ¬ ∅ ∈ ∅
2221pm2.21i 119 . . . . . . . 8 (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅))
2322a1i 11 . . . . . . 7 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ ∅ → (𝐴 ·o (ω ↑o ∅)) = (ω ↑o ∅)))
24 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ω ∈ On)
25 simpll 766 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ ω)
26 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ∅ ∈ 𝐴)
27 omabslem 8706 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω)
2824, 25, 26, 27syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o ω) = ω)
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o ω) = ω)
30 suceq 6461 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → suc 𝑦 = suc ∅)
31 df-1o 8522 . . . . . . . . . . . . . . . . . 18 1o = suc ∅
3230, 31eqtr4di 2798 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → suc 𝑦 = 1o)
3332oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (ω ↑o suc 𝑦) = (ω ↑o 1o))
34 oe1 8600 . . . . . . . . . . . . . . . . 17 (ω ∈ On → (ω ↑o 1o) = ω)
3534ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 1o) = ω)
3633, 35sylan9eqr 2802 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (ω ↑o suc 𝑦) = ω)
3736oveq2d 7464 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ω))
3829, 37, 363eqtr4d 2790 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) ∧ 𝑦 = ∅) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))
3938ex 412 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
4039a1dd 50 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
41 oveq1 7455 . . . . . . . . . . . . . 14 ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω))
42 oesuc 8583 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4342adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o suc 𝑦) = ((ω ↑o 𝑦) ·o ω))
4443oveq2d 7464 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
45 nnon 7909 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ω → 𝐴 ∈ On)
4645ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝐴 ∈ On)
47 oecl 8593 . . . . . . . . . . . . . . . . . 18 ((ω ∈ On ∧ 𝑦 ∈ On) → (ω ↑o 𝑦) ∈ On)
4847adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (ω ↑o 𝑦) ∈ On)
49 omass 8636 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ ω ∈ On) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5046, 48, 24, 49syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = (𝐴 ·o ((ω ↑o 𝑦) ·o ω)))
5144, 50eqtr4d 2783 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o (ω ↑o suc 𝑦)) = ((𝐴 ·o (ω ↑o 𝑦)) ·o ω))
5251, 43eqeq12d 2756 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦) ↔ ((𝐴 ·o (ω ↑o 𝑦)) ·o ω) = ((ω ↑o 𝑦) ·o ω)))
5341, 52imbitrrid 246 . . . . . . . . . . . . 13 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
5453imim2d 57 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
5554com23 86 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (∅ ∈ 𝑦 → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
56 simprr 772 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → 𝑦 ∈ On)
57 on0eqel 6519 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5856, 57syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → (𝑦 = ∅ ∨ ∅ ∈ 𝑦))
5940, 55, 58mpjaod 859 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))
6059a1dd 50 . . . . . . . . 9 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝑦 ∈ On)) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6160anassrs 467 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦))))
6261expcom 413 . . . . . . 7 (𝑦 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ suc 𝑦 → (𝐴 ·o (ω ↑o suc 𝑦)) = (ω ↑o suc 𝑦)))))
6345ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝐴 ∈ On)
64 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ On)
65 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → Lim 𝑥)
66 vex 3492 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
6765, 66jctil 519 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (𝑥 ∈ V ∧ Lim 𝑥))
68 limelon 6459 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6967, 68syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝑥 ∈ On)
70 oecl 8593 . . . . . . . . . . . . . . . 16 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ↑o 𝑥) ∈ On)
7164, 69, 70syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (ω ↑o 𝑥) ∈ On)
7271adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
73 1onn 8696 . . . . . . . . . . . . . . . . 17 1o ∈ ω
74 ondif2 8558 . . . . . . . . . . . . . . . . 17 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
7564, 73, 74sylanblrc 589 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ω ∈ (On ∖ 2o))
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
7767adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑥 ∈ V ∧ Lim 𝑥))
78 oelimcl 8656 . . . . . . . . . . . . . . 15 ((ω ∈ (On ∖ 2o) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (ω ↑o 𝑥))
7976, 77, 78syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → Lim (ω ↑o 𝑥))
80 omlim 8589 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ ((ω ↑o 𝑥) ∈ On ∧ Lim (ω ↑o 𝑥))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
8163, 72, 79, 80syl12anc 836 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧))
82 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ω ∈ On)
83 oelim2 8651 . . . . . . . . . . . . . . . . . . . 20 ((ω ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8482, 77, 83syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) = 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦))
8584eleq2d 2830 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ 𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦)))
86 eliun 5019 . . . . . . . . . . . . . . . . . 18 (𝑧 𝑦 ∈ (𝑥 ∖ 1o)(ω ↑o 𝑦) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦))
8785, 86bitrdi 287 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
8869adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑥 ∈ On)
89 anass 468 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
90 onelon 6420 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
91 on0eln0 6451 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (∅ ∈ 𝑦𝑦 ≠ ∅))
9290, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → (∅ ∈ 𝑦𝑦 ≠ ∅))
9392pm5.32da 578 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ (𝑦𝑥𝑦 ≠ ∅)))
94 dif1o 8556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝑥 ∖ 1o) ↔ (𝑦𝑥𝑦 ≠ ∅))
9593, 94bitr4di 289 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → ((𝑦𝑥 ∧ ∅ ∈ 𝑦) ↔ 𝑦 ∈ (𝑥 ∖ 1o)))
9695anbi1d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (((𝑦𝑥 ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9789, 96bitr3id 285 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → ((𝑦𝑥 ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) ↔ (𝑦 ∈ (𝑥 ∖ 1o) ∧ 𝑧 ∈ (ω ↑o 𝑦))))
9897rexbidv2 3181 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
9988, 98syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) ↔ ∃𝑦 ∈ (𝑥 ∖ 1o)𝑧 ∈ (ω ↑o 𝑦)))
10087, 99bitr4d 282 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) ↔ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
101 r19.29 3120 . . . . . . . . . . . . . . . . . 18 ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)))
103102imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
104103anim1i 614 . . . . . . . . . . . . . . . . . . . . 21 ((((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∅ ∈ 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
105104anasss 466 . . . . . . . . . . . . . . . . . . . 20 (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)))
10671ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑥) ∈ On)
107 eloni 6405 . . . . . . . . . . . . . . . . . . . . . . 23 ((ω ↑o 𝑥) ∈ On → Ord (ω ↑o 𝑥))
108106, 107syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → Ord (ω ↑o 𝑥))
109 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑦))
11064ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ On)
11169ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑥 ∈ On)
112 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦𝑥)
113111, 112, 90syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑦 ∈ On)
114110, 113, 47syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ On)
115 onelon 6420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((ω ↑o 𝑦) ∈ On ∧ 𝑧 ∈ (ω ↑o 𝑦)) → 𝑧 ∈ On)
116114, 109, 115syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝑧 ∈ On)
11745ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → 𝐴 ∈ On)
118117ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → 𝐴 ∈ On)
119 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ∅ ∈ 𝐴)
120119ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
121 omord2 8623 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ On ∧ (ω ↑o 𝑦) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
122116, 114, 118, 120, 121syl31anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑦) ↔ (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦))))
123109, 122mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (𝐴 ·o (ω ↑o 𝑦)))
124 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))
125123, 124eleqtrd 2846 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦))
12675ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → ω ∈ (On ∖ 2o))
127 oeord 8644 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ (On ∖ 2o)) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
128113, 111, 126, 127syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝑦𝑥 ↔ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)))
129112, 128mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (ω ↑o 𝑦) ∈ (ω ↑o 𝑥))
130 ontr1 6441 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ↑o 𝑥) ∈ On → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
131106, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (((𝐴 ·o 𝑧) ∈ (ω ↑o 𝑦) ∧ (ω ↑o 𝑦) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)))
132125, 129, 131mp2and 698 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥))
133 ordelss 6411 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord (ω ↑o 𝑥) ∧ (𝐴 ·o 𝑧) ∈ (ω ↑o 𝑥)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
134108, 132, 133syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) ∧ ((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
135134ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦) ∧ 𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
136105, 135syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ 𝑦𝑥) → (((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
137136rexlimdva 3161 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∃𝑦𝑥 ((∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
138101, 137syl5 34 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → ((∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) ∧ ∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦))) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
139138expdimp 452 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (∃𝑦𝑥 (∅ ∈ 𝑦𝑧 ∈ (ω ↑o 𝑦)) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
140100, 139sylbid 240 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝑧 ∈ (ω ↑o 𝑥) → (𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥)))
141140ralrimiv 3151 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
142 iunss 5068 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥) ↔ ∀𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
143141, 142sylibr 234 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → 𝑧 ∈ (ω ↑o 𝑥)(𝐴 ·o 𝑧) ⊆ (ω ↑o 𝑥))
14481, 143eqsstrd 4047 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) ⊆ (ω ↑o 𝑥))
145 simpllr 775 . . . . . . . . . . . . 13 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → ∅ ∈ 𝐴)
146 omword2 8630 . . . . . . . . . . . . 13 ((((ω ↑o 𝑥) ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
14772, 63, 145, 146syl21anc 837 . . . . . . . . . . . 12 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (ω ↑o 𝑥) ⊆ (𝐴 ·o (ω ↑o 𝑥)))
148144, 147eqssd 4026 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) ∧ ∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦))) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))
149148ex 412 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ Lim 𝑥)) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
150149anassrs 467 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))
151150a1dd 50 . . . . . . . 8 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥))))
152151expcom 413 . . . . . . 7 (Lim 𝑥 → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∀𝑦𝑥 (∅ ∈ 𝑦 → (𝐴 ·o (ω ↑o 𝑦)) = (ω ↑o 𝑦)) → (∅ ∈ 𝑥 → (𝐴 ·o (ω ↑o 𝑥)) = (ω ↑o 𝑥)))))
1535, 10, 15, 20, 23, 62, 152tfinds3 7902 . . . . . 6 (𝐵 ∈ On → (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
154153com12 32 . . . . 5 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ ω ∈ On) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
155154adantrr 716 . . . 4 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐵 ∈ On → (∅ ∈ 𝐵 → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))))
156155imp32 418 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
157156an32s 651 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
158 nnm0 8661 . . . 4 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
159158ad3antrrr 729 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o ∅) = ∅)
160 fnoe 8566 . . . . . . 7 o Fn (On × On)
161 fndm 6682 . . . . . . 7 ( ↑o Fn (On × On) → dom ↑o = (On × On))
162160, 161ax-mp 5 . . . . . 6 dom ↑o = (On × On)
163162ndmov 7634 . . . . 5 (¬ (ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) = ∅)
164163adantl 481 . . . 4 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (ω ↑o 𝐵) = ∅)
165164oveq2d 7464 . . 3 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (𝐴 ·o ∅))
166159, 165, 1643eqtr4d 2790 . 2 ((((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) ∧ ¬ (ω ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
167157, 166pm2.61dan 812 1 (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  c0 4352   ciun 5015   × cxp 5698  dom cdm 5700  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397   Fn wfn 6568  (class class class)co 7448  ωcom 7903  1oc1o 8515  2oc2o 8516   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by:  cnfcom3  9773  omabs2  43294
  Copyright terms: Public domain W3C validator