MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem4 Structured version   Visualization version   GIF version

Theorem cantnflem4 9380
Description: Lemma for cantnf 9381. Complete the induction step of cantnflem3 9379. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
Assertion
Ref Expression
cantnflem4 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝐴,𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑆,𝑐,𝑥,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem4
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnf.s . . . 4 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
2 cantnfs.a . . . . . . . . 9 (𝜑𝐴 ∈ On)
3 cantnfs.s . . . . . . . . . . . . 13 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ On)
5 oemapval.t . . . . . . . . . . . . 13 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (𝐴o 𝐵))
7 cantnf.e . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ 𝐶)
83, 2, 4, 5, 6, 1, 7cantnflem2 9378 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
9 eqid 2738 . . . . . . . . . . . . . 14 𝑋 = 𝑋
10 eqid 2738 . . . . . . . . . . . . . 14 𝑌 = 𝑌
11 eqid 2738 . . . . . . . . . . . . . 14 𝑍 = 𝑍
129, 10, 113pm3.2i 1337 . . . . . . . . . . . . 13 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
13 cantnf.x . . . . . . . . . . . . . 14 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
14 cantnf.p . . . . . . . . . . . . . 14 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
15 cantnf.y . . . . . . . . . . . . . 14 𝑌 = (1st𝑃)
16 cantnf.z . . . . . . . . . . . . . 14 𝑍 = (2nd𝑃)
1713, 14, 15, 16oeeui 8395 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1812, 17mpbiri 257 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
198, 18syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
2019simpld 494 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)))
2120simp1d 1140 . . . . . . . . 9 (𝜑𝑋 ∈ On)
22 oecl 8329 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
232, 21, 22syl2anc 583 . . . . . . . 8 (𝜑 → (𝐴o 𝑋) ∈ On)
2420simp2d 1141 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐴 ∖ 1o))
2524eldifad 3895 . . . . . . . . 9 (𝜑𝑌𝐴)
26 onelon 6276 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
272, 25, 26syl2anc 583 . . . . . . . 8 (𝜑𝑌 ∈ On)
28 omcl 8328 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
2923, 27, 28syl2anc 583 . . . . . . 7 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3020simp3d 1142 . . . . . . . 8 (𝜑𝑍 ∈ (𝐴o 𝑋))
31 onelon 6276 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴o 𝑋)) → 𝑍 ∈ On)
3223, 30, 31syl2anc 583 . . . . . . 7 (𝜑𝑍 ∈ On)
33 oaword1 8345 . . . . . . 7 ((((𝐴o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
3429, 32, 33syl2anc 583 . . . . . 6 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
35 dif1o 8292 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌𝐴𝑌 ≠ ∅))
3635simprbi 496 . . . . . . . . . 10 (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅)
3724, 36syl 17 . . . . . . . . 9 (𝜑𝑌 ≠ ∅)
38 on0eln0 6306 . . . . . . . . . 10 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3927, 38syl 17 . . . . . . . . 9 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
4037, 39mpbird 256 . . . . . . . 8 (𝜑 → ∅ ∈ 𝑌)
41 omword1 8366 . . . . . . . 8 ((((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
4223, 27, 40, 41syl21anc 834 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
4342, 30sseldd 3918 . . . . . 6 (𝜑𝑍 ∈ ((𝐴o 𝑋) ·o 𝑌))
4434, 43sseldd 3918 . . . . 5 (𝜑𝑍 ∈ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4519simprd 495 . . . . 5 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)
4644, 45eleqtrd 2841 . . . 4 (𝜑𝑍𝐶)
471, 46sseldd 3918 . . 3 (𝜑𝑍 ∈ ran (𝐴 CNF 𝐵))
483, 2, 4cantnff 9362 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
49 ffn 6584 . . . 4 ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆)
50 fvelrnb 6812 . . . 4 ((𝐴 CNF 𝐵) Fn 𝑆 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍))
5148, 49, 503syl 18 . . 3 (𝜑 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍))
5247, 51mpbid 231 . 2 (𝜑 → ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)
532adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐴 ∈ On)
544adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐵 ∈ On)
556adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ (𝐴o 𝐵))
561adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ⊆ ran (𝐴 CNF 𝐵))
577adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ∅ ∈ 𝐶)
58 simprl 767 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝑔𝑆)
59 simprr 769 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)
60 eqid 2738 . . 3 (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔𝑡))) = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔𝑡)))
613, 53, 54, 5, 55, 56, 57, 13, 14, 15, 16, 58, 59, 60cantnflem3 9379 . 2 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ ran (𝐴 CNF 𝐵))
6252, 61rexlimddv 3219 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cdif 3880  wss 3883  c0 4253  ifcif 4456  cop 4564   cuni 4836   cint 4876  {copab 5132  cmpt 5153  dom cdm 5580  ran crn 5581  Oncon0 6251  cio 6374   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  1oc1o 8260  2oc2o 8261   +o coa 8264   ·o comu 8265  o coe 8266   CNF ccnf 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-cnf 9350
This theorem is referenced by:  cantnf  9381
  Copyright terms: Public domain W3C validator