MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem4 Structured version   Visualization version   GIF version

Theorem cantnflem4 9732
Description: Lemma for cantnf 9733. Complete the induction step of cantnflem3 9731. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
Assertion
Ref Expression
cantnflem4 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝐴,𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑆,𝑐,𝑥,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem4
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnf.s . . . 4 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
2 cantnfs.a . . . . . . . . 9 (𝜑𝐴 ∈ On)
3 cantnfs.s . . . . . . . . . . . . 13 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ On)
5 oemapval.t . . . . . . . . . . . . 13 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (𝐴o 𝐵))
7 cantnf.e . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ 𝐶)
83, 2, 4, 5, 6, 1, 7cantnflem2 9730 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
9 eqid 2737 . . . . . . . . . . . . . 14 𝑋 = 𝑋
10 eqid 2737 . . . . . . . . . . . . . 14 𝑌 = 𝑌
11 eqid 2737 . . . . . . . . . . . . . 14 𝑍 = 𝑍
129, 10, 113pm3.2i 1340 . . . . . . . . . . . . 13 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
13 cantnf.x . . . . . . . . . . . . . 14 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
14 cantnf.p . . . . . . . . . . . . . 14 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
15 cantnf.y . . . . . . . . . . . . . 14 𝑌 = (1st𝑃)
16 cantnf.z . . . . . . . . . . . . . 14 𝑍 = (2nd𝑃)
1713, 14, 15, 16oeeui 8640 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1812, 17mpbiri 258 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
198, 18syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
2019simpld 494 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)))
2120simp1d 1143 . . . . . . . . 9 (𝜑𝑋 ∈ On)
22 oecl 8575 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
232, 21, 22syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴o 𝑋) ∈ On)
2420simp2d 1144 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐴 ∖ 1o))
2524eldifad 3963 . . . . . . . . 9 (𝜑𝑌𝐴)
26 onelon 6409 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
272, 25, 26syl2anc 584 . . . . . . . 8 (𝜑𝑌 ∈ On)
28 omcl 8574 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
2923, 27, 28syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3020simp3d 1145 . . . . . . . 8 (𝜑𝑍 ∈ (𝐴o 𝑋))
31 onelon 6409 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴o 𝑋)) → 𝑍 ∈ On)
3223, 30, 31syl2anc 584 . . . . . . 7 (𝜑𝑍 ∈ On)
33 oaword1 8590 . . . . . . 7 ((((𝐴o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
3429, 32, 33syl2anc 584 . . . . . 6 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
35 dif1o 8538 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌𝐴𝑌 ≠ ∅))
3635simprbi 496 . . . . . . . . . 10 (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅)
3724, 36syl 17 . . . . . . . . 9 (𝜑𝑌 ≠ ∅)
38 on0eln0 6440 . . . . . . . . . 10 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3927, 38syl 17 . . . . . . . . 9 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
4037, 39mpbird 257 . . . . . . . 8 (𝜑 → ∅ ∈ 𝑌)
41 omword1 8611 . . . . . . . 8 ((((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
4223, 27, 40, 41syl21anc 838 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
4342, 30sseldd 3984 . . . . . 6 (𝜑𝑍 ∈ ((𝐴o 𝑋) ·o 𝑌))
4434, 43sseldd 3984 . . . . 5 (𝜑𝑍 ∈ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4519simprd 495 . . . . 5 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)
4644, 45eleqtrd 2843 . . . 4 (𝜑𝑍𝐶)
471, 46sseldd 3984 . . 3 (𝜑𝑍 ∈ ran (𝐴 CNF 𝐵))
483, 2, 4cantnff 9714 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
49 ffn 6736 . . . 4 ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆)
50 fvelrnb 6969 . . . 4 ((𝐴 CNF 𝐵) Fn 𝑆 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍))
5148, 49, 503syl 18 . . 3 (𝜑 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍))
5247, 51mpbid 232 . 2 (𝜑 → ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)
532adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐴 ∈ On)
544adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐵 ∈ On)
556adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ (𝐴o 𝐵))
561adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ⊆ ran (𝐴 CNF 𝐵))
577adantr 480 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ∅ ∈ 𝐶)
58 simprl 771 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝑔𝑆)
59 simprr 773 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)
60 eqid 2737 . . 3 (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔𝑡))) = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔𝑡)))
613, 53, 54, 5, 55, 56, 57, 13, 14, 15, 16, 58, 59, 60cantnflem3 9731 . 2 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ ran (𝐴 CNF 𝐵))
6252, 61rexlimddv 3161 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  wss 3951  c0 4333  ifcif 4525  cop 4632   cuni 4907   cint 4946  {copab 5205  cmpt 5225  dom cdm 5685  ran crn 5686  Oncon0 6384  cio 6512   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  1oc1o 8499  2oc2o 8500   +o coa 8503   ·o comu 8504  o coe 8505   CNF ccnf 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-seqom 8488  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-oexp 8512  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-cnf 9702
This theorem is referenced by:  cantnf  9733
  Copyright terms: Public domain W3C validator