MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem4 Structured version   Visualization version   GIF version

Theorem cantnflem4 9728
Description: Lemma for cantnf 9729. Complete the induction step of cantnflem3 9727. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴o 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
cantnf.x 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
cantnf.p 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
cantnf.y 𝑌 = (1st𝑃)
cantnf.z 𝑍 = (2nd𝑃)
Assertion
Ref Expression
cantnflem4 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧,𝐶   𝐴,𝑎,𝑏,𝑐,𝑑,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑆,𝑐,𝑥,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑋,𝑎,𝑏,𝑑,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑤,𝑎,𝑏,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑑)   𝑋(𝑐)   𝑌(𝑎,𝑏,𝑐,𝑑)   𝑍(𝑤,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem cantnflem4
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnf.s . . . 4 (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
2 cantnfs.a . . . . . . . . 9 (𝜑𝐴 ∈ On)
3 cantnfs.s . . . . . . . . . . . . 13 𝑆 = dom (𝐴 CNF 𝐵)
4 cantnfs.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ On)
5 oemapval.t . . . . . . . . . . . . 13 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 cantnf.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (𝐴o 𝐵))
7 cantnf.e . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ 𝐶)
83, 2, 4, 5, 6, 1, 7cantnflem2 9726 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)))
9 eqid 2726 . . . . . . . . . . . . . 14 𝑋 = 𝑋
10 eqid 2726 . . . . . . . . . . . . . 14 𝑌 = 𝑌
11 eqid 2726 . . . . . . . . . . . . . 14 𝑍 = 𝑍
129, 10, 113pm3.2i 1336 . . . . . . . . . . . . 13 (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)
13 cantnf.x . . . . . . . . . . . . . 14 𝑋 = {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴o 𝑐)}
14 cantnf.p . . . . . . . . . . . . . 14 𝑃 = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴o 𝑋)(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶))
15 cantnf.y . . . . . . . . . . . . . 14 𝑌 = (1st𝑃)
16 cantnf.z . . . . . . . . . . . . . 14 𝑍 = (2nd𝑃)
1713, 14, 15, 16oeeui 8624 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋𝑌 = 𝑌𝑍 = 𝑍)))
1812, 17mpbiri 257 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
198, 18syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)) ∧ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶))
2019simpld 493 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴o 𝑋)))
2120simp1d 1139 . . . . . . . . 9 (𝜑𝑋 ∈ On)
22 oecl 8559 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
232, 21, 22syl2anc 582 . . . . . . . 8 (𝜑 → (𝐴o 𝑋) ∈ On)
2420simp2d 1140 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐴 ∖ 1o))
2524eldifad 3958 . . . . . . . . 9 (𝜑𝑌𝐴)
26 onelon 6393 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
272, 25, 26syl2anc 582 . . . . . . . 8 (𝜑𝑌 ∈ On)
28 omcl 8558 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
2923, 27, 28syl2anc 582 . . . . . . 7 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ∈ On)
3020simp3d 1141 . . . . . . . 8 (𝜑𝑍 ∈ (𝐴o 𝑋))
31 onelon 6393 . . . . . . . 8 (((𝐴o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴o 𝑋)) → 𝑍 ∈ On)
3223, 30, 31syl2anc 582 . . . . . . 7 (𝜑𝑍 ∈ On)
33 oaword1 8574 . . . . . . 7 ((((𝐴o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
3429, 32, 33syl2anc 582 . . . . . 6 (𝜑 → ((𝐴o 𝑋) ·o 𝑌) ⊆ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
35 dif1o 8522 . . . . . . . . . . 11 (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌𝐴𝑌 ≠ ∅))
3635simprbi 495 . . . . . . . . . 10 (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅)
3724, 36syl 17 . . . . . . . . 9 (𝜑𝑌 ≠ ∅)
38 on0eln0 6424 . . . . . . . . . 10 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
3927, 38syl 17 . . . . . . . . 9 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
4037, 39mpbird 256 . . . . . . . 8 (𝜑 → ∅ ∈ 𝑌)
41 omword1 8595 . . . . . . . 8 ((((𝐴o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈ 𝑌) → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
4223, 27, 40, 41syl21anc 836 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ⊆ ((𝐴o 𝑋) ·o 𝑌))
4342, 30sseldd 3979 . . . . . 6 (𝜑𝑍 ∈ ((𝐴o 𝑋) ·o 𝑌))
4434, 43sseldd 3979 . . . . 5 (𝜑𝑍 ∈ (((𝐴o 𝑋) ·o 𝑌) +o 𝑍))
4519simprd 494 . . . . 5 (𝜑 → (((𝐴o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)
4644, 45eleqtrd 2828 . . . 4 (𝜑𝑍𝐶)
471, 46sseldd 3979 . . 3 (𝜑𝑍 ∈ ran (𝐴 CNF 𝐵))
483, 2, 4cantnff 9710 . . . 4 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
49 ffn 6720 . . . 4 ((𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆)
50 fvelrnb 6955 . . . 4 ((𝐴 CNF 𝐵) Fn 𝑆 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍))
5148, 49, 503syl 18 . . 3 (𝜑 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍))
5247, 51mpbid 231 . 2 (𝜑 → ∃𝑔𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)
532adantr 479 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐴 ∈ On)
544adantr 479 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐵 ∈ On)
556adantr 479 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ (𝐴o 𝐵))
561adantr 479 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ⊆ ran (𝐴 CNF 𝐵))
577adantr 479 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ∅ ∈ 𝐶)
58 simprl 769 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝑔𝑆)
59 simprr 771 . . 3 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)
60 eqid 2726 . . 3 (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔𝑡))) = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔𝑡)))
613, 53, 54, 5, 55, 56, 57, 13, 14, 15, 16, 58, 59, 60cantnflem3 9727 . 2 ((𝜑 ∧ (𝑔𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ ran (𝐴 CNF 𝐵))
6252, 61rexlimddv 3151 1 (𝜑𝐶 ∈ ran (𝐴 CNF 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  cdif 3943  wss 3946  c0 4322  ifcif 4523  cop 4629   cuni 4905   cint 4946  {copab 5207  cmpt 5228  dom cdm 5674  ran crn 5675  Oncon0 6368  cio 6496   Fn wfn 6541  wf 6542  cfv 6546  (class class class)co 7416  1st c1st 7993  2nd c2nd 7994  1oc1o 8481  2oc2o 8482   +o coa 8485   ·o comu 8486  o coe 8487   CNF ccnf 9697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-seqom 8470  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-oexp 8494  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-oi 9546  df-cnf 9698
This theorem is referenced by:  cantnf  9729
  Copyright terms: Public domain W3C validator