Step | Hyp | Ref
| Expression |
1 | | cantnf.s |
. . . 4
⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
2 | | cantnfs.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | cantnfs.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
4 | | cantnfs.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ On) |
5 | | oemapval.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
6 | | cantnf.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) |
7 | | cantnf.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∅ ∈ 𝐶) |
8 | 3, 2, 4, 5, 6, 1, 7 | cantnflem2 9446 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧
𝐶 ∈ (On ∖
1o))) |
9 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ 𝑋 = 𝑋 |
10 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ 𝑌 = 𝑌 |
11 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ 𝑍 = 𝑍 |
12 | 9, 10, 11 | 3pm3.2i 1338 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍) |
13 | | cantnf.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 = ∪
∩ {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴 ↑o 𝑐)} |
14 | | cantnf.p |
. . . . . . . . . . . . . 14
⊢ 𝑃 = (℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o 𝑋)(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶)) |
15 | | cantnf.y |
. . . . . . . . . . . . . 14
⊢ 𝑌 = (1st ‘𝑃) |
16 | | cantnf.z |
. . . . . . . . . . . . . 14
⊢ 𝑍 = (2nd ‘𝑃) |
17 | 13, 14, 15, 16 | oeeui 8431 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐶
∈ (On ∖ 1o)) → (((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) ∧ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) ↔ (𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍))) |
18 | 12, 17 | mpbiri 257 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐶
∈ (On ∖ 1o)) → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) ∧ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)) |
19 | 8, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) ∧ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶)) |
20 | 19 | simpld 495 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∈ On ∧ 𝑌 ∈ (𝐴 ∖ 1o) ∧ 𝑍 ∈ (𝐴 ↑o 𝑋))) |
21 | 20 | simp1d 1141 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ On) |
22 | | oecl 8365 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴 ↑o 𝑋) ∈ On) |
23 | 2, 21, 22 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ↑o 𝑋) ∈ On) |
24 | 20 | simp2d 1142 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝐴 ∖ 1o)) |
25 | 24 | eldifad 3900 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
26 | | onelon 6293 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ On) |
27 | 2, 25, 26 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ On) |
28 | | omcl 8364 |
. . . . . . . 8
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ 𝑌 ∈ On) → ((𝐴 ↑o 𝑋) ·o 𝑌) ∈ On) |
29 | 23, 27, 28 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o 𝑌) ∈ On) |
30 | 20 | simp3d 1143 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝐴 ↑o 𝑋)) |
31 | | onelon 6293 |
. . . . . . . 8
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ 𝑍 ∈ (𝐴 ↑o 𝑋)) → 𝑍 ∈ On) |
32 | 23, 30, 31 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ On) |
33 | | oaword1 8381 |
. . . . . . 7
⊢ ((((𝐴 ↑o 𝑋) ·o 𝑌) ∈ On ∧ 𝑍 ∈ On) → ((𝐴 ↑o 𝑋) ·o 𝑌) ⊆ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍)) |
34 | 29, 32, 33 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o 𝑌) ⊆ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍)) |
35 | | dif1o 8328 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (𝐴 ∖ 1o) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ≠ ∅)) |
36 | 35 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝐴 ∖ 1o) → 𝑌 ≠ ∅) |
37 | 24, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ≠ ∅) |
38 | | on0eln0 6323 |
. . . . . . . . . 10
⊢ (𝑌 ∈ On → (∅
∈ 𝑌 ↔ 𝑌 ≠ ∅)) |
39 | 27, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅)) |
40 | 37, 39 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝑌) |
41 | | omword1 8402 |
. . . . . . . 8
⊢ ((((𝐴 ↑o 𝑋) ∈ On ∧ 𝑌 ∈ On) ∧ ∅ ∈
𝑌) → (𝐴 ↑o 𝑋) ⊆ ((𝐴 ↑o 𝑋) ·o 𝑌)) |
42 | 23, 27, 40, 41 | syl21anc 835 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑o 𝑋) ⊆ ((𝐴 ↑o 𝑋) ·o 𝑌)) |
43 | 42, 30 | sseldd 3923 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ ((𝐴 ↑o 𝑋) ·o 𝑌)) |
44 | 34, 43 | sseldd 3923 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍)) |
45 | 19 | simprd 496 |
. . . . 5
⊢ (𝜑 → (((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍) = 𝐶) |
46 | 44, 45 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝐶) |
47 | 1, 46 | sseldd 3923 |
. . 3
⊢ (𝜑 → 𝑍 ∈ ran (𝐴 CNF 𝐵)) |
48 | 3, 2, 4 | cantnff 9430 |
. . . 4
⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) |
49 | | ffn 6602 |
. . . 4
⊢ ((𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆) |
50 | | fvelrnb 6832 |
. . . 4
⊢ ((𝐴 CNF 𝐵) Fn 𝑆 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔 ∈ 𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) |
51 | 48, 49, 50 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑍 ∈ ran (𝐴 CNF 𝐵) ↔ ∃𝑔 ∈ 𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) |
52 | 47, 51 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑔 ∈ 𝑆 ((𝐴 CNF 𝐵)‘𝑔) = 𝑍) |
53 | 2 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐴 ∈ On) |
54 | 4 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐵 ∈ On) |
55 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ (𝐴 ↑o 𝐵)) |
56 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) |
57 | 7 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ∅ ∈ 𝐶) |
58 | | simprl 768 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝑔 ∈ 𝑆) |
59 | | simprr 770 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → ((𝐴 CNF 𝐵)‘𝑔) = 𝑍) |
60 | | eqid 2738 |
. . 3
⊢ (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔‘𝑡))) = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝑔‘𝑡))) |
61 | 3, 53, 54, 5, 55, 56, 57, 13, 14, 15, 16, 58, 59, 60 | cantnflem3 9447 |
. 2
⊢ ((𝜑 ∧ (𝑔 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝑔) = 𝑍)) → 𝐶 ∈ ran (𝐴 CNF 𝐵)) |
62 | 52, 61 | rexlimddv 3219 |
1
⊢ (𝜑 → 𝐶 ∈ ran (𝐴 CNF 𝐵)) |