MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3lem Structured version   Visualization version   GIF version

Theorem cnfcom3lem 9722
Description: Lemma for cnfcom3 9723. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom3.1 (𝜑 → ω ⊆ 𝐵)
Assertion
Ref Expression
cnfcom3lem (𝜑𝑊 ∈ (On ∖ 1o))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom3lem
StepHypRef Expression
1 cnfcom.w . . 3 𝑊 = (𝐺 dom 𝐺)
2 cnfcom.a . . . 4 (𝜑𝐴 ∈ On)
3 suppssdm 8181 . . . . . 6 (𝐹 supp ∅) ⊆ dom 𝐹
4 cnfcom.f . . . . . . . . 9 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . 12 𝑆 = dom (ω CNF 𝐴)
6 omelon 9665 . . . . . . . . . . . . 13 ω ∈ On
76a1i 11 . . . . . . . . . . . 12 (𝜑 → ω ∈ On)
85, 7, 2cantnff1o 9715 . . . . . . . . . . 11 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
9 f1ocnv 6835 . . . . . . . . . . 11 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
10 f1of 6823 . . . . . . . . . . 11 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
118, 9, 103syl 18 . . . . . . . . . 10 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
12 cnfcom.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ω ↑o 𝐴))
1311, 12ffvelcdmd 7080 . . . . . . . . 9 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
144, 13eqeltrid 2839 . . . . . . . 8 (𝜑𝐹𝑆)
155, 7, 2cantnfs 9685 . . . . . . . 8 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1614, 15mpbid 232 . . . . . . 7 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1716simpld 494 . . . . . 6 (𝜑𝐹:𝐴⟶ω)
183, 17fssdm 6730 . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
19 ovex 7443 . . . . . . . . . . 11 (𝐹 supp ∅) ∈ V
20 cnfcom.g . . . . . . . . . . . 12 𝐺 = OrdIso( E , (𝐹 supp ∅))
2120oion 9555 . . . . . . . . . . 11 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
2219, 21ax-mp 5 . . . . . . . . . 10 dom 𝐺 ∈ On
2322elexi 3487 . . . . . . . . 9 dom 𝐺 ∈ V
2423uniex 7740 . . . . . . . 8 dom 𝐺 ∈ V
2524sucid 6441 . . . . . . 7 dom 𝐺 ∈ suc dom 𝐺
26 cnfcom.h . . . . . . . 8 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
27 cnfcom.t . . . . . . . 8 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
28 cnfcom.m . . . . . . . 8 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
29 cnfcom.k . . . . . . . 8 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
30 cnfcom3.1 . . . . . . . . 9 (𝜑 → ω ⊆ 𝐵)
31 peano1 7889 . . . . . . . . . 10 ∅ ∈ ω
3231a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3330, 32sseldd 3964 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐵)
345, 2, 12, 4, 20, 26, 27, 28, 29, 1, 33cnfcom2lem 9720 . . . . . . 7 (𝜑 → dom 𝐺 = suc dom 𝐺)
3525, 34eleqtrrid 2842 . . . . . 6 (𝜑 dom 𝐺 ∈ dom 𝐺)
3620oif 9549 . . . . . . 7 𝐺:dom 𝐺⟶(𝐹 supp ∅)
3736ffvelcdmi 7078 . . . . . 6 ( dom 𝐺 ∈ dom 𝐺 → (𝐺 dom 𝐺) ∈ (𝐹 supp ∅))
3835, 37syl 17 . . . . 5 (𝜑 → (𝐺 dom 𝐺) ∈ (𝐹 supp ∅))
3918, 38sseldd 3964 . . . 4 (𝜑 → (𝐺 dom 𝐺) ∈ 𝐴)
40 onelon 6382 . . . 4 ((𝐴 ∈ On ∧ (𝐺 dom 𝐺) ∈ 𝐴) → (𝐺 dom 𝐺) ∈ On)
412, 39, 40syl2anc 584 . . 3 (𝜑 → (𝐺 dom 𝐺) ∈ On)
421, 41eqeltrid 2839 . 2 (𝜑𝑊 ∈ On)
43 oecl 8554 . . . . . . 7 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ↑o 𝐴) ∈ On)
446, 2, 43sylancr 587 . . . . . 6 (𝜑 → (ω ↑o 𝐴) ∈ On)
45 onelon 6382 . . . . . 6 (((ω ↑o 𝐴) ∈ On ∧ 𝐵 ∈ (ω ↑o 𝐴)) → 𝐵 ∈ On)
4644, 12, 45syl2anc 584 . . . . 5 (𝜑𝐵 ∈ On)
47 ontri1 6391 . . . . 5 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
486, 46, 47sylancr 587 . . . 4 (𝜑 → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
4930, 48mpbid 232 . . 3 (𝜑 → ¬ 𝐵 ∈ ω)
504fveq2i 6884 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
51 f1ocnvfv2 7275 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
528, 12, 51syl2anc 584 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5350, 52eqtrid 2783 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5453adantr 480 . . . . . 6 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
556a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → ω ∈ On)
562adantr 480 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐴 ∈ On)
5714adantr 480 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐹𝑆)
5831a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → ∅ ∈ ω)
59 1on 8497 . . . . . . . . 9 1o ∈ On
6059a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → 1o ∈ On)
61 ovexd 7445 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 supp ∅) ∈ V)
625, 7, 2, 20, 14cantnfcl 9686 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
6362simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → E We (𝐹 supp ∅))
6420oiiso 9556 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
6665ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
67 isof1o 7321 . . . . . . . . . . . . . . . . . 18 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
6866, 67syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
69 f1ocnv 6835 . . . . . . . . . . . . . . . . 17 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
70 f1of 6823 . . . . . . . . . . . . . . . . 17 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
7168, 69, 703syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
72 ffvelcdm 7076 . . . . . . . . . . . . . . . 16 ((𝐺:(𝐹 supp ∅)⟶dom 𝐺𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ dom 𝐺)
7371, 72sylancom 588 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ dom 𝐺)
74 elssuni 4918 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ dom 𝐺 → (𝐺𝑥) ⊆ dom 𝐺)
7573, 74syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ⊆ dom 𝐺)
76 onelon 6382 . . . . . . . . . . . . . . . 16 ((dom 𝐺 ∈ On ∧ (𝐺𝑥) ∈ dom 𝐺) → (𝐺𝑥) ∈ On)
7722, 73, 76sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ On)
78 onuni 7787 . . . . . . . . . . . . . . . 16 (dom 𝐺 ∈ On → dom 𝐺 ∈ On)
7922, 78ax-mp 5 . . . . . . . . . . . . . . 15 dom 𝐺 ∈ On
80 ontri1 6391 . . . . . . . . . . . . . . 15 (((𝐺𝑥) ∈ On ∧ dom 𝐺 ∈ On) → ((𝐺𝑥) ⊆ dom 𝐺 ↔ ¬ dom 𝐺 ∈ (𝐺𝑥)))
8177, 79, 80sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ((𝐺𝑥) ⊆ dom 𝐺 ↔ ¬ dom 𝐺 ∈ (𝐺𝑥)))
8275, 81mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ dom 𝐺 ∈ (𝐺𝑥))
8335ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → dom 𝐺 ∈ dom 𝐺)
84 isorel 7324 . . . . . . . . . . . . . . . 16 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ ( dom 𝐺 ∈ dom 𝐺 ∧ (𝐺𝑥) ∈ dom 𝐺)) → ( dom 𝐺 E (𝐺𝑥) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥))))
8566, 83, 73, 84syl12anc 836 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 E (𝐺𝑥) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥))))
86 fvex 6894 . . . . . . . . . . . . . . . 16 (𝐺𝑥) ∈ V
8786epeli 5560 . . . . . . . . . . . . . . 15 ( dom 𝐺 E (𝐺𝑥) ↔ dom 𝐺 ∈ (𝐺𝑥))
881breq1i 5131 . . . . . . . . . . . . . . . 16 (𝑊 E (𝐺‘(𝐺𝑥)) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥)))
89 fvex 6894 . . . . . . . . . . . . . . . . 17 (𝐺‘(𝐺𝑥)) ∈ V
9089epeli 5560 . . . . . . . . . . . . . . . 16 (𝑊 E (𝐺‘(𝐺𝑥)) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥)))
9188, 90bitr3i 277 . . . . . . . . . . . . . . 15 ((𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥)) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥)))
9285, 87, 913bitr3g 313 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 ∈ (𝐺𝑥) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥))))
93 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑊 = ∅)
94 f1ocnvfv2 7275 . . . . . . . . . . . . . . . 16 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝑥)) = 𝑥)
9568, 94sylancom 588 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝑥)) = 𝑥)
9693, 95eleq12d 2829 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑊 ∈ (𝐺‘(𝐺𝑥)) ↔ ∅ ∈ 𝑥))
9792, 96bitrd 279 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 ∈ (𝐺𝑥) ↔ ∅ ∈ 𝑥))
9882, 97mtbid 324 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ ∅ ∈ 𝑥)
99 onss 7784 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → 𝐴 ⊆ On)
1002, 99syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ On)
10118, 100sstrd 3974 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) ⊆ On)
102101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑊 = ∅) → (𝐹 supp ∅) ⊆ On)
103102sselda 3963 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ On)
104 on0eqel 6483 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
105103, 104syl 17 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
106105ord 864 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (¬ 𝑥 = ∅ → ∅ ∈ 𝑥))
10798, 106mt3d 148 . . . . . . . . . . 11 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 = ∅)
108 el1o 8512 . . . . . . . . . . 11 (𝑥 ∈ 1o𝑥 = ∅)
109107, 108sylibr 234 . . . . . . . . . 10 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ 1o)
110109ex 412 . . . . . . . . 9 ((𝜑𝑊 = ∅) → (𝑥 ∈ (𝐹 supp ∅) → 𝑥 ∈ 1o))
111110ssrdv 3969 . . . . . . . 8 ((𝜑𝑊 = ∅) → (𝐹 supp ∅) ⊆ 1o)
1125, 55, 56, 57, 58, 60, 111cantnflt2 9692 . . . . . . 7 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ (ω ↑o 1o))
113 oe1 8561 . . . . . . . 8 (ω ∈ On → (ω ↑o 1o) = ω)
1146, 113ax-mp 5 . . . . . . 7 (ω ↑o 1o) = ω
115112, 114eleqtrdi 2845 . . . . . 6 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ ω)
11654, 115eqeltrrd 2836 . . . . 5 ((𝜑𝑊 = ∅) → 𝐵 ∈ ω)
117116ex 412 . . . 4 (𝜑 → (𝑊 = ∅ → 𝐵 ∈ ω))
118117necon3bd 2947 . . 3 (𝜑 → (¬ 𝐵 ∈ ω → 𝑊 ≠ ∅))
11949, 118mpd 15 . 2 (𝜑𝑊 ≠ ∅)
120 dif1o 8517 . 2 (𝑊 ∈ (On ∖ 1o) ↔ (𝑊 ∈ On ∧ 𝑊 ≠ ∅))
12142, 119, 120sylanbrc 583 1 (𝜑𝑊 ∈ (On ∖ 1o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  cun 3929  wss 3931  c0 4313   cuni 4888   class class class wbr 5124  cmpt 5206   E cep 5557   We wwe 5610  ccnv 5658  dom cdm 5659  Oncon0 6357  suc csuc 6359  wf 6532  1-1-ontowf1o 6535  cfv 6536   Isom wiso 6537  (class class class)co 7410  cmpo 7412  ωcom 7866   supp csupp 8164  seqωcseqom 8466  1oc1o 8478   +o coa 8482   ·o comu 8483  o coe 8484   finSupp cfsupp 9378  OrdIsocoi 9528   CNF ccnf 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-seqom 8467  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-oexp 8491  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-cnf 9681
This theorem is referenced by:  cnfcom3  9723  cnfcom3clem  9724
  Copyright terms: Public domain W3C validator