MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3lem Structured version   Visualization version   GIF version

Theorem cnfcom3lem 9743
Description: Lemma for cnfcom3 9744. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom3.1 (𝜑 → ω ⊆ 𝐵)
Assertion
Ref Expression
cnfcom3lem (𝜑𝑊 ∈ (On ∖ 1o))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom3lem
StepHypRef Expression
1 cnfcom.w . . 3 𝑊 = (𝐺 dom 𝐺)
2 cnfcom.a . . . 4 (𝜑𝐴 ∈ On)
3 suppssdm 8202 . . . . . 6 (𝐹 supp ∅) ⊆ dom 𝐹
4 cnfcom.f . . . . . . . . 9 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . 12 𝑆 = dom (ω CNF 𝐴)
6 omelon 9686 . . . . . . . . . . . . 13 ω ∈ On
76a1i 11 . . . . . . . . . . . 12 (𝜑 → ω ∈ On)
85, 7, 2cantnff1o 9736 . . . . . . . . . . 11 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
9 f1ocnv 6860 . . . . . . . . . . 11 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
10 f1of 6848 . . . . . . . . . . 11 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
118, 9, 103syl 18 . . . . . . . . . 10 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
12 cnfcom.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ω ↑o 𝐴))
1311, 12ffvelcdmd 7105 . . . . . . . . 9 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
144, 13eqeltrid 2845 . . . . . . . 8 (𝜑𝐹𝑆)
155, 7, 2cantnfs 9706 . . . . . . . 8 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1614, 15mpbid 232 . . . . . . 7 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1716simpld 494 . . . . . 6 (𝜑𝐹:𝐴⟶ω)
183, 17fssdm 6755 . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
19 ovex 7464 . . . . . . . . . . 11 (𝐹 supp ∅) ∈ V
20 cnfcom.g . . . . . . . . . . . 12 𝐺 = OrdIso( E , (𝐹 supp ∅))
2120oion 9576 . . . . . . . . . . 11 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
2219, 21ax-mp 5 . . . . . . . . . 10 dom 𝐺 ∈ On
2322elexi 3503 . . . . . . . . 9 dom 𝐺 ∈ V
2423uniex 7761 . . . . . . . 8 dom 𝐺 ∈ V
2524sucid 6466 . . . . . . 7 dom 𝐺 ∈ suc dom 𝐺
26 cnfcom.h . . . . . . . 8 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
27 cnfcom.t . . . . . . . 8 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
28 cnfcom.m . . . . . . . 8 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
29 cnfcom.k . . . . . . . 8 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
30 cnfcom3.1 . . . . . . . . 9 (𝜑 → ω ⊆ 𝐵)
31 peano1 7910 . . . . . . . . . 10 ∅ ∈ ω
3231a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ ω)
3330, 32sseldd 3984 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐵)
345, 2, 12, 4, 20, 26, 27, 28, 29, 1, 33cnfcom2lem 9741 . . . . . . 7 (𝜑 → dom 𝐺 = suc dom 𝐺)
3525, 34eleqtrrid 2848 . . . . . 6 (𝜑 dom 𝐺 ∈ dom 𝐺)
3620oif 9570 . . . . . . 7 𝐺:dom 𝐺⟶(𝐹 supp ∅)
3736ffvelcdmi 7103 . . . . . 6 ( dom 𝐺 ∈ dom 𝐺 → (𝐺 dom 𝐺) ∈ (𝐹 supp ∅))
3835, 37syl 17 . . . . 5 (𝜑 → (𝐺 dom 𝐺) ∈ (𝐹 supp ∅))
3918, 38sseldd 3984 . . . 4 (𝜑 → (𝐺 dom 𝐺) ∈ 𝐴)
40 onelon 6409 . . . 4 ((𝐴 ∈ On ∧ (𝐺 dom 𝐺) ∈ 𝐴) → (𝐺 dom 𝐺) ∈ On)
412, 39, 40syl2anc 584 . . 3 (𝜑 → (𝐺 dom 𝐺) ∈ On)
421, 41eqeltrid 2845 . 2 (𝜑𝑊 ∈ On)
43 oecl 8575 . . . . . . 7 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ↑o 𝐴) ∈ On)
446, 2, 43sylancr 587 . . . . . 6 (𝜑 → (ω ↑o 𝐴) ∈ On)
45 onelon 6409 . . . . . 6 (((ω ↑o 𝐴) ∈ On ∧ 𝐵 ∈ (ω ↑o 𝐴)) → 𝐵 ∈ On)
4644, 12, 45syl2anc 584 . . . . 5 (𝜑𝐵 ∈ On)
47 ontri1 6418 . . . . 5 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
486, 46, 47sylancr 587 . . . 4 (𝜑 → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
4930, 48mpbid 232 . . 3 (𝜑 → ¬ 𝐵 ∈ ω)
504fveq2i 6909 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
51 f1ocnvfv2 7297 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
528, 12, 51syl2anc 584 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5350, 52eqtrid 2789 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5453adantr 480 . . . . . 6 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
556a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → ω ∈ On)
562adantr 480 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐴 ∈ On)
5714adantr 480 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐹𝑆)
5831a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → ∅ ∈ ω)
59 1on 8518 . . . . . . . . 9 1o ∈ On
6059a1i 11 . . . . . . . 8 ((𝜑𝑊 = ∅) → 1o ∈ On)
61 ovexd 7466 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 supp ∅) ∈ V)
625, 7, 2, 20, 14cantnfcl 9707 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
6362simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → E We (𝐹 supp ∅))
6420oiiso 9577 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
6665ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
67 isof1o 7343 . . . . . . . . . . . . . . . . . 18 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
6866, 67syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
69 f1ocnv 6860 . . . . . . . . . . . . . . . . 17 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
70 f1of 6848 . . . . . . . . . . . . . . . . 17 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
7168, 69, 703syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
72 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((𝐺:(𝐹 supp ∅)⟶dom 𝐺𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ dom 𝐺)
7371, 72sylancom 588 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ dom 𝐺)
74 elssuni 4937 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ dom 𝐺 → (𝐺𝑥) ⊆ dom 𝐺)
7573, 74syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ⊆ dom 𝐺)
76 onelon 6409 . . . . . . . . . . . . . . . 16 ((dom 𝐺 ∈ On ∧ (𝐺𝑥) ∈ dom 𝐺) → (𝐺𝑥) ∈ On)
7722, 73, 76sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺𝑥) ∈ On)
78 onuni 7808 . . . . . . . . . . . . . . . 16 (dom 𝐺 ∈ On → dom 𝐺 ∈ On)
7922, 78ax-mp 5 . . . . . . . . . . . . . . 15 dom 𝐺 ∈ On
80 ontri1 6418 . . . . . . . . . . . . . . 15 (((𝐺𝑥) ∈ On ∧ dom 𝐺 ∈ On) → ((𝐺𝑥) ⊆ dom 𝐺 ↔ ¬ dom 𝐺 ∈ (𝐺𝑥)))
8177, 79, 80sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ((𝐺𝑥) ⊆ dom 𝐺 ↔ ¬ dom 𝐺 ∈ (𝐺𝑥)))
8275, 81mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ dom 𝐺 ∈ (𝐺𝑥))
8335ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → dom 𝐺 ∈ dom 𝐺)
84 isorel 7346 . . . . . . . . . . . . . . . 16 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ ( dom 𝐺 ∈ dom 𝐺 ∧ (𝐺𝑥) ∈ dom 𝐺)) → ( dom 𝐺 E (𝐺𝑥) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥))))
8566, 83, 73, 84syl12anc 837 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 E (𝐺𝑥) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥))))
86 fvex 6919 . . . . . . . . . . . . . . . 16 (𝐺𝑥) ∈ V
8786epeli 5586 . . . . . . . . . . . . . . 15 ( dom 𝐺 E (𝐺𝑥) ↔ dom 𝐺 ∈ (𝐺𝑥))
881breq1i 5150 . . . . . . . . . . . . . . . 16 (𝑊 E (𝐺‘(𝐺𝑥)) ↔ (𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥)))
89 fvex 6919 . . . . . . . . . . . . . . . . 17 (𝐺‘(𝐺𝑥)) ∈ V
9089epeli 5586 . . . . . . . . . . . . . . . 16 (𝑊 E (𝐺‘(𝐺𝑥)) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥)))
9188, 90bitr3i 277 . . . . . . . . . . . . . . 15 ((𝐺 dom 𝐺) E (𝐺‘(𝐺𝑥)) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥)))
9285, 87, 913bitr3g 313 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 ∈ (𝐺𝑥) ↔ 𝑊 ∈ (𝐺‘(𝐺𝑥))))
93 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑊 = ∅)
94 f1ocnvfv2 7297 . . . . . . . . . . . . . . . 16 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝑥)) = 𝑥)
9568, 94sylancom 588 . . . . . . . . . . . . . . 15 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝑥)) = 𝑥)
9693, 95eleq12d 2835 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑊 ∈ (𝐺‘(𝐺𝑥)) ↔ ∅ ∈ 𝑥))
9792, 96bitrd 279 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ( dom 𝐺 ∈ (𝐺𝑥) ↔ ∅ ∈ 𝑥))
9882, 97mtbid 324 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ ∅ ∈ 𝑥)
99 onss 7805 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → 𝐴 ⊆ On)
1002, 99syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ On)
10118, 100sstrd 3994 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) ⊆ On)
102101adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑊 = ∅) → (𝐹 supp ∅) ⊆ On)
103102sselda 3983 . . . . . . . . . . . . . 14 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ On)
104 on0eqel 6508 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
105103, 104syl 17 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑥 = ∅ ∨ ∅ ∈ 𝑥))
106105ord 865 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (¬ 𝑥 = ∅ → ∅ ∈ 𝑥))
10798, 106mt3d 148 . . . . . . . . . . 11 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 = ∅)
108 el1o 8533 . . . . . . . . . . 11 (𝑥 ∈ 1o𝑥 = ∅)
109107, 108sylibr 234 . . . . . . . . . 10 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ 1o)
110109ex 412 . . . . . . . . 9 ((𝜑𝑊 = ∅) → (𝑥 ∈ (𝐹 supp ∅) → 𝑥 ∈ 1o))
111110ssrdv 3989 . . . . . . . 8 ((𝜑𝑊 = ∅) → (𝐹 supp ∅) ⊆ 1o)
1125, 55, 56, 57, 58, 60, 111cantnflt2 9713 . . . . . . 7 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ (ω ↑o 1o))
113 oe1 8582 . . . . . . . 8 (ω ∈ On → (ω ↑o 1o) = ω)
1146, 113ax-mp 5 . . . . . . 7 (ω ↑o 1o) = ω
115112, 114eleqtrdi 2851 . . . . . 6 ((𝜑𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ ω)
11654, 115eqeltrrd 2842 . . . . 5 ((𝜑𝑊 = ∅) → 𝐵 ∈ ω)
117116ex 412 . . . 4 (𝜑 → (𝑊 = ∅ → 𝐵 ∈ ω))
118117necon3bd 2954 . . 3 (𝜑 → (¬ 𝐵 ∈ ω → 𝑊 ≠ ∅))
11949, 118mpd 15 . 2 (𝜑𝑊 ≠ ∅)
120 dif1o 8538 . 2 (𝑊 ∈ (On ∖ 1o) ↔ (𝑊 ∈ On ∧ 𝑊 ≠ ∅))
12142, 119, 120sylanbrc 583 1 (𝜑𝑊 ∈ (On ∖ 1o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  cun 3949  wss 3951  c0 4333   cuni 4907   class class class wbr 5143  cmpt 5225   E cep 5583   We wwe 5636  ccnv 5684  dom cdm 5685  Oncon0 6384  suc csuc 6386  wf 6557  1-1-ontowf1o 6560  cfv 6561   Isom wiso 6562  (class class class)co 7431  cmpo 7433  ωcom 7887   supp csupp 8185  seqωcseqom 8487  1oc1o 8499   +o coa 8503   ·o comu 8504  o coe 8505   finSupp cfsupp 9401  OrdIsocoi 9549   CNF ccnf 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-seqom 8488  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-oexp 8512  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-cnf 9702
This theorem is referenced by:  cnfcom3  9744  cnfcom3clem  9745
  Copyright terms: Public domain W3C validator