Proof of Theorem cnfcom3lem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnfcom.w | . . 3
⊢ 𝑊 = (𝐺‘∪ dom
𝐺) | 
| 2 |  | cnfcom.a | . . . 4
⊢ (𝜑 → 𝐴 ∈ On) | 
| 3 |  | suppssdm 8202 | . . . . . 6
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | 
| 4 |  | cnfcom.f | . . . . . . . . 9
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) | 
| 5 |  | cnfcom.s | . . . . . . . . . . . 12
⊢ 𝑆 = dom (ω CNF 𝐴) | 
| 6 |  | omelon 9686 | . . . . . . . . . . . . 13
⊢ ω
∈ On | 
| 7 | 6 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → ω ∈
On) | 
| 8 | 5, 7, 2 | cantnff1o 9736 | . . . . . . . . . . 11
⊢ (𝜑 → (ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴)) | 
| 9 |  | f1ocnv 6860 | . . . . . . . . . . 11
⊢ ((ω
CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) → ◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆) | 
| 10 |  | f1of 6848 | . . . . . . . . . . 11
⊢ (◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 11 | 8, 9, 10 | 3syl 18 | . . . . . . . . . 10
⊢ (𝜑 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 12 |  | cnfcom.b | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) | 
| 13 | 11, 12 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ (𝜑 → (◡(ω CNF 𝐴)‘𝐵) ∈ 𝑆) | 
| 14 | 4, 13 | eqeltrid 2845 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝑆) | 
| 15 | 5, 7, 2 | cantnfs 9706 | . . . . . . . 8
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))) | 
| 16 | 14, 15 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)) | 
| 17 | 16 | simpld 494 | . . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶ω) | 
| 18 | 3, 17 | fssdm 6755 | . . . . 5
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐴) | 
| 19 |  | ovex 7464 | . . . . . . . . . . 11
⊢ (𝐹 supp ∅) ∈
V | 
| 20 |  | cnfcom.g | . . . . . . . . . . . 12
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | 
| 21 | 20 | oion 9576 | . . . . . . . . . . 11
⊢ ((𝐹 supp ∅) ∈ V →
dom 𝐺 ∈
On) | 
| 22 | 19, 21 | ax-mp 5 | . . . . . . . . . 10
⊢ dom 𝐺 ∈ On | 
| 23 | 22 | elexi 3503 | . . . . . . . . 9
⊢ dom 𝐺 ∈ V | 
| 24 | 23 | uniex 7761 | . . . . . . . 8
⊢ ∪ dom 𝐺 ∈ V | 
| 25 | 24 | sucid 6466 | . . . . . . 7
⊢ ∪ dom 𝐺 ∈ suc ∪ dom
𝐺 | 
| 26 |  | cnfcom.h | . . . . . . . 8
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) | 
| 27 |  | cnfcom.t | . . . . . . . 8
⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) | 
| 28 |  | cnfcom.m | . . . . . . . 8
⊢ 𝑀 = ((ω ↑o
(𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) | 
| 29 |  | cnfcom.k | . . . . . . . 8
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) | 
| 30 |  | cnfcom3.1 | . . . . . . . . 9
⊢ (𝜑 → ω ⊆ 𝐵) | 
| 31 |  | peano1 7910 | . . . . . . . . . 10
⊢ ∅
∈ ω | 
| 32 | 31 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → ∅ ∈
ω) | 
| 33 | 30, 32 | sseldd 3984 | . . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝐵) | 
| 34 | 5, 2, 12, 4, 20, 26, 27, 28, 29, 1, 33 | cnfcom2lem 9741 | . . . . . . 7
⊢ (𝜑 → dom 𝐺 = suc ∪ dom
𝐺) | 
| 35 | 25, 34 | eleqtrrid 2848 | . . . . . 6
⊢ (𝜑 → ∪ dom 𝐺 ∈ dom 𝐺) | 
| 36 | 20 | oif 9570 | . . . . . . 7
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) | 
| 37 | 36 | ffvelcdmi 7103 | . . . . . 6
⊢ (∪ dom 𝐺 ∈ dom 𝐺 → (𝐺‘∪ dom
𝐺) ∈ (𝐹 supp ∅)) | 
| 38 | 35, 37 | syl 17 | . . . . 5
⊢ (𝜑 → (𝐺‘∪ dom
𝐺) ∈ (𝐹 supp ∅)) | 
| 39 | 18, 38 | sseldd 3984 | . . . 4
⊢ (𝜑 → (𝐺‘∪ dom
𝐺) ∈ 𝐴) | 
| 40 |  | onelon 6409 | . . . 4
⊢ ((𝐴 ∈ On ∧ (𝐺‘∪ dom 𝐺) ∈ 𝐴) → (𝐺‘∪ dom
𝐺) ∈
On) | 
| 41 | 2, 39, 40 | syl2anc 584 | . . 3
⊢ (𝜑 → (𝐺‘∪ dom
𝐺) ∈
On) | 
| 42 | 1, 41 | eqeltrid 2845 | . 2
⊢ (𝜑 → 𝑊 ∈ On) | 
| 43 |  | oecl 8575 | . . . . . . 7
⊢ ((ω
∈ On ∧ 𝐴 ∈
On) → (ω ↑o 𝐴) ∈ On) | 
| 44 | 6, 2, 43 | sylancr 587 | . . . . . 6
⊢ (𝜑 → (ω
↑o 𝐴)
∈ On) | 
| 45 |  | onelon 6409 | . . . . . 6
⊢
(((ω ↑o 𝐴) ∈ On ∧ 𝐵 ∈ (ω ↑o 𝐴)) → 𝐵 ∈ On) | 
| 46 | 44, 12, 45 | syl2anc 584 | . . . . 5
⊢ (𝜑 → 𝐵 ∈ On) | 
| 47 |  | ontri1 6418 | . . . . 5
⊢ ((ω
∈ On ∧ 𝐵 ∈
On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) | 
| 48 | 6, 46, 47 | sylancr 587 | . . . 4
⊢ (𝜑 → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) | 
| 49 | 30, 48 | mpbid 232 | . . 3
⊢ (𝜑 → ¬ 𝐵 ∈ ω) | 
| 50 | 4 | fveq2i 6909 | . . . . . . . 8
⊢ ((ω
CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) | 
| 51 |  | f1ocnvfv2 7297 | . . . . . . . . 9
⊢
(((ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) = 𝐵) | 
| 52 | 8, 12, 51 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) = 𝐵) | 
| 53 | 50, 52 | eqtrid 2789 | . . . . . . 7
⊢ (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵) | 
| 54 | 53 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵) | 
| 55 | 6 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → ω ∈
On) | 
| 56 | 2 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐴 ∈ On) | 
| 57 | 14 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 ∈ 𝑆) | 
| 58 | 31 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → ∅ ∈
ω) | 
| 59 |  | 1on 8518 | . . . . . . . . 9
⊢
1o ∈ On | 
| 60 | 59 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → 1o ∈
On) | 
| 61 |  | ovexd 7466 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | 
| 62 | 5, 7, 2, 20, 14 | cantnfcl 9707 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) | 
| 63 | 62 | simpld 494 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → E We (𝐹 supp ∅)) | 
| 64 | 20 | oiiso 9577 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 65 | 61, 63, 64 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 66 | 65 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) | 
| 67 |  | isof1o 7343 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅)) | 
| 68 | 66, 67 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅)) | 
| 69 |  | f1ocnv 6860 | . . . . . . . . . . . . . . . . 17
⊢ (𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅) → ◡𝐺:(𝐹 supp ∅)–1-1-onto→dom
𝐺) | 
| 70 |  | f1of 6848 | . . . . . . . . . . . . . . . . 17
⊢ (◡𝐺:(𝐹 supp ∅)–1-1-onto→dom
𝐺 → ◡𝐺:(𝐹 supp ∅)⟶dom 𝐺) | 
| 71 | 68, 69, 70 | 3syl 18 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ◡𝐺:(𝐹 supp ∅)⟶dom 𝐺) | 
| 72 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . . 16
⊢ ((◡𝐺:(𝐹 supp ∅)⟶dom 𝐺 ∧ 𝑥 ∈ (𝐹 supp ∅)) → (◡𝐺‘𝑥) ∈ dom 𝐺) | 
| 73 | 71, 72 | sylancom 588 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (◡𝐺‘𝑥) ∈ dom 𝐺) | 
| 74 |  | elssuni 4937 | . . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑥) ∈ dom 𝐺 → (◡𝐺‘𝑥) ⊆ ∪ dom
𝐺) | 
| 75 | 73, 74 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (◡𝐺‘𝑥) ⊆ ∪ dom
𝐺) | 
| 76 |  | onelon 6409 | . . . . . . . . . . . . . . . 16
⊢ ((dom
𝐺 ∈ On ∧ (◡𝐺‘𝑥) ∈ dom 𝐺) → (◡𝐺‘𝑥) ∈ On) | 
| 77 | 22, 73, 76 | sylancr 587 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (◡𝐺‘𝑥) ∈ On) | 
| 78 |  | onuni 7808 | . . . . . . . . . . . . . . . 16
⊢ (dom
𝐺 ∈ On → ∪ dom 𝐺 ∈ On) | 
| 79 | 22, 78 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ ∪ dom 𝐺 ∈ On | 
| 80 |  | ontri1 6418 | . . . . . . . . . . . . . . 15
⊢ (((◡𝐺‘𝑥) ∈ On ∧ ∪ dom 𝐺 ∈ On) → ((◡𝐺‘𝑥) ⊆ ∪ dom
𝐺 ↔ ¬ ∪ dom 𝐺 ∈ (◡𝐺‘𝑥))) | 
| 81 | 77, 79, 80 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ((◡𝐺‘𝑥) ⊆ ∪ dom
𝐺 ↔ ¬ ∪ dom 𝐺 ∈ (◡𝐺‘𝑥))) | 
| 82 | 75, 81 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ ∪ dom 𝐺 ∈ (◡𝐺‘𝑥)) | 
| 83 | 35 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ∪ dom 𝐺 ∈ dom 𝐺) | 
| 84 |  | isorel 7346 | . . . . . . . . . . . . . . . 16
⊢ ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (∪ dom 𝐺 ∈ dom 𝐺 ∧ (◡𝐺‘𝑥) ∈ dom 𝐺)) → (∪ dom
𝐺 E (◡𝐺‘𝑥) ↔ (𝐺‘∪ dom
𝐺) E (𝐺‘(◡𝐺‘𝑥)))) | 
| 85 | 66, 83, 73, 84 | syl12anc 837 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (∪ dom 𝐺 E (◡𝐺‘𝑥) ↔ (𝐺‘∪ dom
𝐺) E (𝐺‘(◡𝐺‘𝑥)))) | 
| 86 |  | fvex 6919 | . . . . . . . . . . . . . . . 16
⊢ (◡𝐺‘𝑥) ∈ V | 
| 87 | 86 | epeli 5586 | . . . . . . . . . . . . . . 15
⊢ (∪ dom 𝐺 E (◡𝐺‘𝑥) ↔ ∪ dom
𝐺 ∈ (◡𝐺‘𝑥)) | 
| 88 | 1 | breq1i 5150 | . . . . . . . . . . . . . . . 16
⊢ (𝑊 E (𝐺‘(◡𝐺‘𝑥)) ↔ (𝐺‘∪ dom
𝐺) E (𝐺‘(◡𝐺‘𝑥))) | 
| 89 |  | fvex 6919 | . . . . . . . . . . . . . . . . 17
⊢ (𝐺‘(◡𝐺‘𝑥)) ∈ V | 
| 90 | 89 | epeli 5586 | . . . . . . . . . . . . . . . 16
⊢ (𝑊 E (𝐺‘(◡𝐺‘𝑥)) ↔ 𝑊 ∈ (𝐺‘(◡𝐺‘𝑥))) | 
| 91 | 88, 90 | bitr3i 277 | . . . . . . . . . . . . . . 15
⊢ ((𝐺‘∪ dom 𝐺) E (𝐺‘(◡𝐺‘𝑥)) ↔ 𝑊 ∈ (𝐺‘(◡𝐺‘𝑥))) | 
| 92 | 85, 87, 91 | 3bitr3g 313 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (∪ dom 𝐺 ∈ (◡𝐺‘𝑥) ↔ 𝑊 ∈ (𝐺‘(◡𝐺‘𝑥)))) | 
| 93 |  | simplr 769 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑊 = ∅) | 
| 94 |  | f1ocnvfv2 7297 | . . . . . . . . . . . . . . . 16
⊢ ((𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(◡𝐺‘𝑥)) = 𝑥) | 
| 95 | 68, 94 | sylancom 588 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝐺‘(◡𝐺‘𝑥)) = 𝑥) | 
| 96 | 93, 95 | eleq12d 2835 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑊 ∈ (𝐺‘(◡𝐺‘𝑥)) ↔ ∅ ∈ 𝑥)) | 
| 97 | 92, 96 | bitrd 279 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (∪ dom 𝐺 ∈ (◡𝐺‘𝑥) ↔ ∅ ∈ 𝑥)) | 
| 98 | 82, 97 | mtbid 324 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → ¬ ∅ ∈
𝑥) | 
| 99 |  | onss 7805 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | 
| 100 | 2, 99 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ⊆ On) | 
| 101 | 18, 100 | sstrd 3994 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) | 
| 102 | 101 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐹 supp ∅) ⊆ On) | 
| 103 | 102 | sselda 3983 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ On) | 
| 104 |  | on0eqel 6508 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈
𝑥)) | 
| 105 | 103, 104 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (𝑥 = ∅ ∨ ∅ ∈ 𝑥)) | 
| 106 | 105 | ord 865 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → (¬ 𝑥 = ∅ → ∅ ∈
𝑥)) | 
| 107 | 98, 106 | mt3d 148 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 = ∅) | 
| 108 |  | el1o 8533 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 1o ↔
𝑥 =
∅) | 
| 109 | 107, 108 | sylibr 234 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ (𝐹 supp ∅)) → 𝑥 ∈ 1o) | 
| 110 | 109 | ex 412 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑥 ∈ (𝐹 supp ∅) → 𝑥 ∈ 1o)) | 
| 111 | 110 | ssrdv 3989 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐹 supp ∅) ⊆
1o) | 
| 112 | 5, 55, 56, 57, 58, 60, 111 | cantnflt2 9713 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ (ω ↑o
1o)) | 
| 113 |  | oe1 8582 | . . . . . . . 8
⊢ (ω
∈ On → (ω ↑o 1o) =
ω) | 
| 114 | 6, 113 | ax-mp 5 | . . . . . . 7
⊢ (ω
↑o 1o) = ω | 
| 115 | 112, 114 | eleqtrdi 2851 | . . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → ((ω CNF 𝐴)‘𝐹) ∈ ω) | 
| 116 | 54, 115 | eqeltrrd 2842 | . . . . 5
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐵 ∈ ω) | 
| 117 | 116 | ex 412 | . . . 4
⊢ (𝜑 → (𝑊 = ∅ → 𝐵 ∈ ω)) | 
| 118 | 117 | necon3bd 2954 | . . 3
⊢ (𝜑 → (¬ 𝐵 ∈ ω → 𝑊 ≠ ∅)) | 
| 119 | 49, 118 | mpd 15 | . 2
⊢ (𝜑 → 𝑊 ≠ ∅) | 
| 120 |  | dif1o 8538 | . 2
⊢ (𝑊 ∈ (On ∖
1o) ↔ (𝑊
∈ On ∧ 𝑊 ≠
∅)) | 
| 121 | 42, 119, 120 | sylanbrc 583 | 1
⊢ (𝜑 → 𝑊 ∈ (On ∖
1o)) |