MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1 Structured version   Visualization version   GIF version

Theorem cantnfp1 9138
Description: If 𝐹 is created by adding a single term (𝐹𝑋) = 𝑌 to 𝐺, where 𝑋 is larger than any element of the support of 𝐺, then 𝐹 is also a finitely supported function and it is assigned the value ((𝐴o 𝑋) ·o 𝑌) +o 𝑧 where 𝑧 is the value of 𝐺. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnfp1 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem cantnfp1
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfp1.f . . . . . 6 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
2 cantnfs.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ On)
3 cantnfp1.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
4 onelon 6211 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
52, 3, 4syl2anc 586 . . . . . . . . . . . 12 (𝜑𝑋 ∈ On)
6 eloni 6196 . . . . . . . . . . . 12 (𝑋 ∈ On → Ord 𝑋)
7 ordirr 6204 . . . . . . . . . . . 12 (Ord 𝑋 → ¬ 𝑋𝑋)
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑 → ¬ 𝑋𝑋)
9 fvex 6678 . . . . . . . . . . . . . 14 (𝐺𝑋) ∈ V
10 dif1o 8119 . . . . . . . . . . . . . 14 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ ((𝐺𝑋) ∈ V ∧ (𝐺𝑋) ≠ ∅))
119, 10mpbiran 707 . . . . . . . . . . . . 13 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ (𝐺𝑋) ≠ ∅)
12 cantnfp1.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺𝑆)
13 cantnfs.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = dom (𝐴 CNF 𝐵)
14 cantnfs.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ On)
1513, 14, 2cantnfs 9123 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
1612, 15mpbid 234 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1716simpld 497 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺:𝐵𝐴)
1817ffnd 6510 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn 𝐵)
19 0ex 5204 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
2019a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ ∈ V)
21 elsuppfn 7832 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2218, 2, 20, 21syl3anc 1367 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2311bicomi 226 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1o))
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1o)))
2524anbi2d 630 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
2622, 25bitrd 281 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
27 cantnfp1.s . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
2827sseld 3966 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋𝑋))
2926, 28sylbird 262 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o)) → 𝑋𝑋))
303, 29mpand 693 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1o) → 𝑋𝑋))
3111, 30syl5bir 245 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑋) ≠ ∅ → 𝑋𝑋))
3231necon1bd 3034 . . . . . . . . . . 11 (𝜑 → (¬ 𝑋𝑋 → (𝐺𝑋) = ∅))
338, 32mpd 15 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) = ∅)
3433ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → (𝐺𝑋) = ∅)
35 simpr 487 . . . . . . . . . 10 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → 𝑡 = 𝑋)
3635fveq2d 6669 . . . . . . . . 9 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → (𝐺𝑡) = (𝐺𝑋))
37 simpllr 774 . . . . . . . . 9 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → 𝑌 = ∅)
3834, 36, 373eqtr4rd 2867 . . . . . . . 8 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → 𝑌 = (𝐺𝑡))
39 eqidd 2822 . . . . . . . 8 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ ¬ 𝑡 = 𝑋) → (𝐺𝑡) = (𝐺𝑡))
4038, 39ifeqda 4502 . . . . . . 7 (((𝜑𝑌 = ∅) ∧ 𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = (𝐺𝑡))
4140mpteq2dva 5154 . . . . . 6 ((𝜑𝑌 = ∅) → (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡))) = (𝑡𝐵 ↦ (𝐺𝑡)))
421, 41syl5eq 2868 . . . . 5 ((𝜑𝑌 = ∅) → 𝐹 = (𝑡𝐵 ↦ (𝐺𝑡)))
4317feqmptd 6728 . . . . . 6 (𝜑𝐺 = (𝑡𝐵 ↦ (𝐺𝑡)))
4443adantr 483 . . . . 5 ((𝜑𝑌 = ∅) → 𝐺 = (𝑡𝐵 ↦ (𝐺𝑡)))
4542, 44eqtr4d 2859 . . . 4 ((𝜑𝑌 = ∅) → 𝐹 = 𝐺)
4612adantr 483 . . . 4 ((𝜑𝑌 = ∅) → 𝐺𝑆)
4745, 46eqeltrd 2913 . . 3 ((𝜑𝑌 = ∅) → 𝐹𝑆)
48 oecl 8156 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
4914, 2, 48syl2anc 586 . . . . . . 7 (𝜑 → (𝐴o 𝐵) ∈ On)
5013, 14, 2cantnff 9131 . . . . . . . 8 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
5150, 12ffvelrnd 6847 . . . . . . 7 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) ∈ (𝐴o 𝐵))
52 onelon 6211 . . . . . . 7 (((𝐴o 𝐵) ∈ On ∧ ((𝐴 CNF 𝐵)‘𝐺) ∈ (𝐴o 𝐵)) → ((𝐴 CNF 𝐵)‘𝐺) ∈ On)
5349, 51, 52syl2anc 586 . . . . . 6 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) ∈ On)
5453adantr 483 . . . . 5 ((𝜑𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐺) ∈ On)
55 oa0r 8157 . . . . 5 (((𝐴 CNF 𝐵)‘𝐺) ∈ On → (∅ +o ((𝐴 CNF 𝐵)‘𝐺)) = ((𝐴 CNF 𝐵)‘𝐺))
5654, 55syl 17 . . . 4 ((𝜑𝑌 = ∅) → (∅ +o ((𝐴 CNF 𝐵)‘𝐺)) = ((𝐴 CNF 𝐵)‘𝐺))
57 oveq2 7158 . . . . . 6 (𝑌 = ∅ → ((𝐴o 𝑋) ·o 𝑌) = ((𝐴o 𝑋) ·o ∅))
58 oecl 8156 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
5914, 5, 58syl2anc 586 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ∈ On)
60 om0 8136 . . . . . . 7 ((𝐴o 𝑋) ∈ On → ((𝐴o 𝑋) ·o ∅) = ∅)
6159, 60syl 17 . . . . . 6 (𝜑 → ((𝐴o 𝑋) ·o ∅) = ∅)
6257, 61sylan9eqr 2878 . . . . 5 ((𝜑𝑌 = ∅) → ((𝐴o 𝑋) ·o 𝑌) = ∅)
6362oveq1d 7165 . . . 4 ((𝜑𝑌 = ∅) → (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)) = (∅ +o ((𝐴 CNF 𝐵)‘𝐺)))
6445fveq2d 6669 . . . 4 ((𝜑𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐹) = ((𝐴 CNF 𝐵)‘𝐺))
6556, 63, 643eqtr4rd 2867 . . 3 ((𝜑𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
6647, 65jca 514 . 2 ((𝜑𝑌 = ∅) → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
6714adantr 483 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝐴 ∈ On)
682adantr 483 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝐵 ∈ On)
6912adantr 483 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝐺𝑆)
703adantr 483 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝑋𝐵)
71 cantnfp1.y . . . . 5 (𝜑𝑌𝐴)
7271adantr 483 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝑌𝐴)
7327adantr 483 . . . 4 ((𝜑𝑌 ≠ ∅) → (𝐺 supp ∅) ⊆ 𝑋)
7413, 67, 68, 69, 70, 72, 73, 1cantnfp1lem1 9135 . . 3 ((𝜑𝑌 ≠ ∅) → 𝐹𝑆)
75 onelon 6211 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
7614, 71, 75syl2anc 586 . . . . . 6 (𝜑𝑌 ∈ On)
77 on0eln0 6241 . . . . . 6 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
7876, 77syl 17 . . . . 5 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
7978biimpar 480 . . . 4 ((𝜑𝑌 ≠ ∅) → ∅ ∈ 𝑌)
80 eqid 2821 . . . 4 OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅))
81 eqid 2821 . . . 4 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)
82 eqid 2821 . . . 4 OrdIso( E , (𝐺 supp ∅)) = OrdIso( E , (𝐺 supp ∅))
83 eqid 2821 . . . 4 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅)
8413, 67, 68, 69, 70, 72, 73, 1, 79, 80, 81, 82, 83cantnfp1lem3 9137 . . 3 ((𝜑𝑌 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
8574, 84jca 514 . 2 ((𝜑𝑌 ≠ ∅) → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
8666, 85pm2.61dane 3104 1 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  cdif 3933  wss 3936  c0 4291  ifcif 4467   class class class wbr 5059  cmpt 5139   E cep 5459  dom cdm 5550  Ord word 6185  Oncon0 6186   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152   supp csupp 7824  seqωcseqom 8077  1oc1o 8089   +o coa 8093   ·o comu 8094  o coe 8095   finSupp cfsupp 8827  OrdIsocoi 8967   CNF ccnf 9118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-oexp 8102  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-cnf 9119
This theorem is referenced by:  cantnflem1d  9145  cantnflem1  9146  cantnflem3  9148
  Copyright terms: Public domain W3C validator