MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1 Structured version   Visualization version   GIF version

Theorem cantnfp1 9439
Description: If 𝐹 is created by adding a single term (𝐹𝑋) = 𝑌 to 𝐺, where 𝑋 is larger than any element of the support of 𝐺, then 𝐹 is also a finitely supported function and it is assigned the value ((𝐴o 𝑋) ·o 𝑌) +o 𝑧 where 𝑧 is the value of 𝐺. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnfp1 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem cantnfp1
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfp1.f . . . . . 6 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
2 cantnfs.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ On)
3 cantnfp1.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
4 onelon 6291 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
52, 3, 4syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑋 ∈ On)
6 eloni 6276 . . . . . . . . . . . 12 (𝑋 ∈ On → Ord 𝑋)
7 ordirr 6284 . . . . . . . . . . . 12 (Ord 𝑋 → ¬ 𝑋𝑋)
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑 → ¬ 𝑋𝑋)
9 fvex 6787 . . . . . . . . . . . . . 14 (𝐺𝑋) ∈ V
10 dif1o 8330 . . . . . . . . . . . . . 14 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ ((𝐺𝑋) ∈ V ∧ (𝐺𝑋) ≠ ∅))
119, 10mpbiran 706 . . . . . . . . . . . . 13 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ (𝐺𝑋) ≠ ∅)
12 cantnfp1.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺𝑆)
13 cantnfs.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = dom (𝐴 CNF 𝐵)
14 cantnfs.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ On)
1513, 14, 2cantnfs 9424 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
1612, 15mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1716simpld 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺:𝐵𝐴)
1817ffnd 6601 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn 𝐵)
19 0ex 5231 . . . . . . . . . . . . . . . . . 18 ∅ ∈ V
2019a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ∅ ∈ V)
21 elsuppfn 7987 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2218, 2, 20, 21syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
2311bicomi 223 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1o))
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1o)))
2524anbi2d 629 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
2622, 25bitrd 278 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
27 cantnfp1.s . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
2827sseld 3920 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋𝑋))
2926, 28sylbird 259 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o)) → 𝑋𝑋))
303, 29mpand 692 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1o) → 𝑋𝑋))
3111, 30syl5bir 242 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑋) ≠ ∅ → 𝑋𝑋))
3231necon1bd 2961 . . . . . . . . . . 11 (𝜑 → (¬ 𝑋𝑋 → (𝐺𝑋) = ∅))
338, 32mpd 15 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) = ∅)
3433ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → (𝐺𝑋) = ∅)
35 simpr 485 . . . . . . . . . 10 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → 𝑡 = 𝑋)
3635fveq2d 6778 . . . . . . . . 9 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → (𝐺𝑡) = (𝐺𝑋))
37 simpllr 773 . . . . . . . . 9 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → 𝑌 = ∅)
3834, 36, 373eqtr4rd 2789 . . . . . . . 8 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ 𝑡 = 𝑋) → 𝑌 = (𝐺𝑡))
39 eqidd 2739 . . . . . . . 8 ((((𝜑𝑌 = ∅) ∧ 𝑡𝐵) ∧ ¬ 𝑡 = 𝑋) → (𝐺𝑡) = (𝐺𝑡))
4038, 39ifeqda 4495 . . . . . . 7 (((𝜑𝑌 = ∅) ∧ 𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = (𝐺𝑡))
4140mpteq2dva 5174 . . . . . 6 ((𝜑𝑌 = ∅) → (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡))) = (𝑡𝐵 ↦ (𝐺𝑡)))
421, 41eqtrid 2790 . . . . 5 ((𝜑𝑌 = ∅) → 𝐹 = (𝑡𝐵 ↦ (𝐺𝑡)))
4317feqmptd 6837 . . . . . 6 (𝜑𝐺 = (𝑡𝐵 ↦ (𝐺𝑡)))
4443adantr 481 . . . . 5 ((𝜑𝑌 = ∅) → 𝐺 = (𝑡𝐵 ↦ (𝐺𝑡)))
4542, 44eqtr4d 2781 . . . 4 ((𝜑𝑌 = ∅) → 𝐹 = 𝐺)
4612adantr 481 . . . 4 ((𝜑𝑌 = ∅) → 𝐺𝑆)
4745, 46eqeltrd 2839 . . 3 ((𝜑𝑌 = ∅) → 𝐹𝑆)
48 oecl 8367 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
4914, 2, 48syl2anc 584 . . . . . . 7 (𝜑 → (𝐴o 𝐵) ∈ On)
5013, 14, 2cantnff 9432 . . . . . . . 8 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
5150, 12ffvelrnd 6962 . . . . . . 7 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) ∈ (𝐴o 𝐵))
52 onelon 6291 . . . . . . 7 (((𝐴o 𝐵) ∈ On ∧ ((𝐴 CNF 𝐵)‘𝐺) ∈ (𝐴o 𝐵)) → ((𝐴 CNF 𝐵)‘𝐺) ∈ On)
5349, 51, 52syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) ∈ On)
5453adantr 481 . . . . 5 ((𝜑𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐺) ∈ On)
55 oa0r 8368 . . . . 5 (((𝐴 CNF 𝐵)‘𝐺) ∈ On → (∅ +o ((𝐴 CNF 𝐵)‘𝐺)) = ((𝐴 CNF 𝐵)‘𝐺))
5654, 55syl 17 . . . 4 ((𝜑𝑌 = ∅) → (∅ +o ((𝐴 CNF 𝐵)‘𝐺)) = ((𝐴 CNF 𝐵)‘𝐺))
57 oveq2 7283 . . . . . 6 (𝑌 = ∅ → ((𝐴o 𝑋) ·o 𝑌) = ((𝐴o 𝑋) ·o ∅))
58 oecl 8367 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
5914, 5, 58syl2anc 584 . . . . . . 7 (𝜑 → (𝐴o 𝑋) ∈ On)
60 om0 8347 . . . . . . 7 ((𝐴o 𝑋) ∈ On → ((𝐴o 𝑋) ·o ∅) = ∅)
6159, 60syl 17 . . . . . 6 (𝜑 → ((𝐴o 𝑋) ·o ∅) = ∅)
6257, 61sylan9eqr 2800 . . . . 5 ((𝜑𝑌 = ∅) → ((𝐴o 𝑋) ·o 𝑌) = ∅)
6362oveq1d 7290 . . . 4 ((𝜑𝑌 = ∅) → (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)) = (∅ +o ((𝐴 CNF 𝐵)‘𝐺)))
6445fveq2d 6778 . . . 4 ((𝜑𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐹) = ((𝐴 CNF 𝐵)‘𝐺))
6556, 63, 643eqtr4rd 2789 . . 3 ((𝜑𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
6647, 65jca 512 . 2 ((𝜑𝑌 = ∅) → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
6714adantr 481 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝐴 ∈ On)
682adantr 481 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝐵 ∈ On)
6912adantr 481 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝐺𝑆)
703adantr 481 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝑋𝐵)
71 cantnfp1.y . . . . 5 (𝜑𝑌𝐴)
7271adantr 481 . . . 4 ((𝜑𝑌 ≠ ∅) → 𝑌𝐴)
7327adantr 481 . . . 4 ((𝜑𝑌 ≠ ∅) → (𝐺 supp ∅) ⊆ 𝑋)
7413, 67, 68, 69, 70, 72, 73, 1cantnfp1lem1 9436 . . 3 ((𝜑𝑌 ≠ ∅) → 𝐹𝑆)
75 onelon 6291 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
7614, 71, 75syl2anc 584 . . . . . 6 (𝜑𝑌 ∈ On)
77 on0eln0 6321 . . . . . 6 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
7876, 77syl 17 . . . . 5 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
7978biimpar 478 . . . 4 ((𝜑𝑌 ≠ ∅) → ∅ ∈ 𝑌)
80 eqid 2738 . . . 4 OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅))
81 eqid 2738 . . . 4 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)
82 eqid 2738 . . . 4 OrdIso( E , (𝐺 supp ∅)) = OrdIso( E , (𝐺 supp ∅))
83 eqid 2738 . . . 4 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅)
8413, 67, 68, 69, 70, 72, 73, 1, 79, 80, 81, 82, 83cantnfp1lem3 9438 . . 3 ((𝜑𝑌 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
8574, 84jca 512 . 2 ((𝜑𝑌 ≠ ∅) → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
8666, 85pm2.61dane 3032 1 (𝜑 → (𝐹𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  c0 4256  ifcif 4459   class class class wbr 5074  cmpt 5157   E cep 5494  dom cdm 5589  Ord word 6265  Oncon0 6266   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277   supp csupp 7977  seqωcseqom 8278  1oc1o 8290   +o coa 8294   ·o comu 8295  o coe 8296   finSupp cfsupp 9128  OrdIsocoi 9268   CNF ccnf 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-cnf 9420
This theorem is referenced by:  cantnflem1d  9446  cantnflem1  9447  cantnflem3  9449
  Copyright terms: Public domain W3C validator