Step | Hyp | Ref
| Expression |
1 | | cantnfp1.f |
. . . . . 6
⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) |
2 | | cantnfs.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ On) |
3 | | cantnfp1.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
4 | | onelon 6291 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
5 | 2, 3, 4 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ On) |
6 | | eloni 6276 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ On → Ord 𝑋) |
7 | | ordirr 6284 |
. . . . . . . . . . . 12
⊢ (Ord
𝑋 → ¬ 𝑋 ∈ 𝑋) |
8 | 5, 6, 7 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑋) |
9 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝐺‘𝑋) ∈ V |
10 | | dif1o 8330 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑋) ∈ (V ∖ 1o) ↔
((𝐺‘𝑋) ∈ V ∧ (𝐺‘𝑋) ≠ ∅)) |
11 | 9, 10 | mpbiran 706 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑋) ∈ (V ∖ 1o) ↔
(𝐺‘𝑋) ≠ ∅) |
12 | | cantnfp1.g |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
13 | | cantnfs.s |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
14 | | cantnfs.a |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ∈ On) |
15 | 13, 14, 2 | cantnfs 9424 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
16 | 12, 15 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
17 | 16 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
18 | 17 | ffnd 6601 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 Fn 𝐵) |
19 | | 0ex 5231 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∅ ∈
V) |
21 | | elsuppfn 7987 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
(𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
22 | 18, 2, 20, 21 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
23 | 11 | bicomi 223 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑋) ≠ ∅ ↔ (𝐺‘𝑋) ∈ (V ∖
1o)) |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐺‘𝑋) ≠ ∅ ↔ (𝐺‘𝑋) ∈ (V ∖
1o))) |
25 | 24 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ∈ (V ∖
1o)))) |
26 | 22, 25 | bitrd 278 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ∈ (V ∖
1o)))) |
27 | | cantnfp1.s |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) |
28 | 27 | sseld 3920 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋 ∈ 𝑋)) |
29 | 26, 28 | sylbird 259 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ∈ (V ∖ 1o)) →
𝑋 ∈ 𝑋)) |
30 | 3, 29 | mpand 692 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐺‘𝑋) ∈ (V ∖ 1o) →
𝑋 ∈ 𝑋)) |
31 | 11, 30 | syl5bir 242 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ 𝑋)) |
32 | 31 | necon1bd 2961 |
. . . . . . . . . . 11
⊢ (𝜑 → (¬ 𝑋 ∈ 𝑋 → (𝐺‘𝑋) = ∅)) |
33 | 8, 32 | mpd 15 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑋) = ∅) |
34 | 33 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑌 = ∅) ∧ 𝑡 ∈ 𝐵) ∧ 𝑡 = 𝑋) → (𝐺‘𝑋) = ∅) |
35 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑌 = ∅) ∧ 𝑡 ∈ 𝐵) ∧ 𝑡 = 𝑋) → 𝑡 = 𝑋) |
36 | 35 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑌 = ∅) ∧ 𝑡 ∈ 𝐵) ∧ 𝑡 = 𝑋) → (𝐺‘𝑡) = (𝐺‘𝑋)) |
37 | | simpllr 773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑌 = ∅) ∧ 𝑡 ∈ 𝐵) ∧ 𝑡 = 𝑋) → 𝑌 = ∅) |
38 | 34, 36, 37 | 3eqtr4rd 2789 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 = ∅) ∧ 𝑡 ∈ 𝐵) ∧ 𝑡 = 𝑋) → 𝑌 = (𝐺‘𝑡)) |
39 | | eqidd 2739 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 = ∅) ∧ 𝑡 ∈ 𝐵) ∧ ¬ 𝑡 = 𝑋) → (𝐺‘𝑡) = (𝐺‘𝑡)) |
40 | 38, 39 | ifeqda 4495 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = ∅) ∧ 𝑡 ∈ 𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) = (𝐺‘𝑡)) |
41 | 40 | mpteq2dva 5174 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) = (𝑡 ∈ 𝐵 ↦ (𝐺‘𝑡))) |
42 | 1, 41 | eqtrid 2790 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐹 = (𝑡 ∈ 𝐵 ↦ (𝐺‘𝑡))) |
43 | 17 | feqmptd 6837 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑡 ∈ 𝐵 ↦ (𝐺‘𝑡))) |
44 | 43 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 = (𝑡 ∈ 𝐵 ↦ (𝐺‘𝑡))) |
45 | 42, 44 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐹 = 𝐺) |
46 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐺 ∈ 𝑆) |
47 | 45, 46 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = ∅) → 𝐹 ∈ 𝑆) |
48 | | oecl 8367 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
49 | 14, 2, 48 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
50 | 13, 14, 2 | cantnff 9432 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) |
51 | 50, 12 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) ∈ (𝐴 ↑o 𝐵)) |
52 | | onelon 6291 |
. . . . . . 7
⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ ((𝐴 CNF 𝐵)‘𝐺) ∈ (𝐴 ↑o 𝐵)) → ((𝐴 CNF 𝐵)‘𝐺) ∈ On) |
53 | 49, 51, 52 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) ∈ On) |
54 | 53 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐺) ∈ On) |
55 | | oa0r 8368 |
. . . . 5
⊢ (((𝐴 CNF 𝐵)‘𝐺) ∈ On → (∅ +o
((𝐴 CNF 𝐵)‘𝐺)) = ((𝐴 CNF 𝐵)‘𝐺)) |
56 | 54, 55 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → (∅ +o
((𝐴 CNF 𝐵)‘𝐺)) = ((𝐴 CNF 𝐵)‘𝐺)) |
57 | | oveq2 7283 |
. . . . . 6
⊢ (𝑌 = ∅ → ((𝐴 ↑o 𝑋) ·o 𝑌) = ((𝐴 ↑o 𝑋) ·o
∅)) |
58 | | oecl 8367 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴 ↑o 𝑋) ∈ On) |
59 | 14, 5, 58 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑o 𝑋) ∈ On) |
60 | | om0 8347 |
. . . . . . 7
⊢ ((𝐴 ↑o 𝑋) ∈ On → ((𝐴 ↑o 𝑋) ·o ∅)
= ∅) |
61 | 59, 60 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o ∅) =
∅) |
62 | 57, 61 | sylan9eqr 2800 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐴 ↑o 𝑋) ·o 𝑌) = ∅) |
63 | 62 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)) = (∅ +o ((𝐴 CNF 𝐵)‘𝐺))) |
64 | 45 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐹) = ((𝐴 CNF 𝐵)‘𝐺)) |
65 | 56, 63, 64 | 3eqtr4rd 2789 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))) |
66 | 47, 65 | jca 512 |
. 2
⊢ ((𝜑 ∧ 𝑌 = ∅) → (𝐹 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))) |
67 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐴 ∈ On) |
68 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐵 ∈ On) |
69 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐺 ∈ 𝑆) |
70 | 3 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝑋 ∈ 𝐵) |
71 | | cantnfp1.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
72 | 71 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝑌 ∈ 𝐴) |
73 | 27 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐺 supp ∅) ⊆ 𝑋) |
74 | 13, 67, 68, 69, 70, 72, 73, 1 | cantnfp1lem1 9436 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → 𝐹 ∈ 𝑆) |
75 | | onelon 6291 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ On) |
76 | 14, 71, 75 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ On) |
77 | | on0eln0 6321 |
. . . . . 6
⊢ (𝑌 ∈ On → (∅
∈ 𝑌 ↔ 𝑌 ≠ ∅)) |
78 | 76, 77 | syl 17 |
. . . . 5
⊢ (𝜑 → (∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅)) |
79 | 78 | biimpar 478 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ∅ ∈ 𝑌) |
80 | | eqid 2738 |
. . . 4
⊢ OrdIso( E
, (𝐹 supp ∅)) =
OrdIso( E , (𝐹 supp
∅)) |
81 | | eqid 2738 |
. . . 4
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) =
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) |
82 | | eqid 2738 |
. . . 4
⊢ OrdIso( E
, (𝐺 supp ∅)) =
OrdIso( E , (𝐺 supp
∅)) |
83 | | eqid 2738 |
. . . 4
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) =
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (OrdIso( E , (𝐺 supp ∅))‘𝑘)) ·o (𝐺‘(OrdIso( E , (𝐺 supp ∅))‘𝑘))) +o 𝑧)), ∅) |
84 | 13, 67, 68, 69, 70, 72, 73, 1, 79, 80, 81, 82, 83 | cantnfp1lem3 9438 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))) |
85 | 74, 84 | jca 512 |
. 2
⊢ ((𝜑 ∧ 𝑌 ≠ ∅) → (𝐹 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))) |
86 | 66, 85 | pm2.61dane 3032 |
1
⊢ (𝜑 → (𝐹 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))) |