Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brwitnlem | Structured version Visualization version GIF version |
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
brwitnlem.r | ⊢ 𝑅 = (◡𝑂 “ (V ∖ 1o)) |
brwitnlem.o | ⊢ 𝑂 Fn 𝑋 |
Ref | Expression |
---|---|
brwitnlem | ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . . 5 ⊢ (𝑂‘〈𝐴, 𝐵〉) ∈ V | |
2 | dif1o 8292 | . . . . 5 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o) ↔ ((𝑂‘〈𝐴, 𝐵〉) ∈ V ∧ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅)) | |
3 | 1, 2 | mpbiran 705 | . . . 4 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o) ↔ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅) |
4 | 3 | anbi2i 622 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅)) |
5 | brwitnlem.o | . . . 4 ⊢ 𝑂 Fn 𝑋 | |
6 | elpreima 6917 | . . . 4 ⊢ (𝑂 Fn 𝑋 → (〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o)))) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o))) |
8 | ndmfv 6786 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝑂 → (𝑂‘〈𝐴, 𝐵〉) = ∅) | |
9 | 8 | necon1ai 2970 | . . . . 5 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom 𝑂) |
10 | 5 | fndmi 6521 | . . . . 5 ⊢ dom 𝑂 = 𝑋 |
11 | 9, 10 | eleqtrdi 2849 | . . . 4 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑋) |
12 | 11 | pm4.71ri 560 | . . 3 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ≠ ∅ ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅)) |
13 | 4, 7, 12 | 3bitr4i 302 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o)) ↔ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅) |
14 | brwitnlem.r | . . . 4 ⊢ 𝑅 = (◡𝑂 “ (V ∖ 1o)) | |
15 | 14 | breqi 5076 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(◡𝑂 “ (V ∖ 1o))𝐵) |
16 | df-br 5071 | . . 3 ⊢ (𝐴(◡𝑂 “ (V ∖ 1o))𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o))) | |
17 | 15, 16 | bitri 274 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o))) |
18 | df-ov 7258 | . . 3 ⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) | |
19 | 18 | neeq1i 3007 | . 2 ⊢ ((𝐴𝑂𝐵) ≠ ∅ ↔ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅) |
20 | 13, 17, 19 | 3bitr4i 302 | 1 ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 〈cop 4564 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 df-1o 8267 |
This theorem is referenced by: brgic 18800 brric 19903 brlmic 20245 hmph 22835 |
Copyright terms: Public domain | W3C validator |