MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwitnlem Structured version   Visualization version   GIF version

Theorem brwitnlem 8431
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
brwitnlem.r 𝑅 = (𝑂 “ (V ∖ 1o))
brwitnlem.o 𝑂 Fn 𝑋
Assertion
Ref Expression
brwitnlem (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)

Proof of Theorem brwitnlem
StepHypRef Expression
1 fvex 6844 . . . . 5 (𝑂‘⟨𝐴, 𝐵⟩) ∈ V
2 dif1o 8424 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o) ↔ ((𝑂‘⟨𝐴, 𝐵⟩) ∈ V ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
31, 2mpbiran 709 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
43anbi2i 623 . . 3 ((⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
5 brwitnlem.o . . . 4 𝑂 Fn 𝑋
6 elpreima 7000 . . . 4 (𝑂 Fn 𝑋 → (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o))))
75, 6ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o)))
8 ndmfv 6863 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝑂 → (𝑂‘⟨𝐴, 𝐵⟩) = ∅)
98necon1ai 2956 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom 𝑂)
105fndmi 6593 . . . . 5 dom 𝑂 = 𝑋
119, 10eleqtrdi 2843 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑋)
1211pm4.71ri 560 . . 3 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
134, 7, 123bitr4i 303 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
14 brwitnlem.r . . . 4 𝑅 = (𝑂 “ (V ∖ 1o))
1514breqi 5101 . . 3 (𝐴𝑅𝐵𝐴(𝑂 “ (V ∖ 1o))𝐵)
16 df-br 5096 . . 3 (𝐴(𝑂 “ (V ∖ 1o))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)))
1715, 16bitri 275 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)))
18 df-ov 7358 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
1918neeq1i 2993 . 2 ((𝐴𝑂𝐵) ≠ ∅ ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
2013, 17, 193bitr4i 303 1 (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  c0 4282  cop 4583   class class class wbr 5095  ccnv 5620  dom cdm 5621  cima 5624   Fn wfn 6484  cfv 6489  (class class class)co 7355  1oc1o 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497  df-ov 7358  df-1o 8394
This theorem is referenced by:  brgic  19190  brric  20428  brlmic  21011  hmph  23711  brgric  48074  brgrlic  48166
  Copyright terms: Public domain W3C validator