| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brwitnlem | Structured version Visualization version GIF version | ||
| Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| brwitnlem.r | ⊢ 𝑅 = (◡𝑂 “ (V ∖ 1o)) |
| brwitnlem.o | ⊢ 𝑂 Fn 𝑋 |
| Ref | Expression |
|---|---|
| brwitnlem | ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6844 | . . . . 5 ⊢ (𝑂‘〈𝐴, 𝐵〉) ∈ V | |
| 2 | dif1o 8424 | . . . . 5 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o) ↔ ((𝑂‘〈𝐴, 𝐵〉) ∈ V ∧ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅)) | |
| 3 | 1, 2 | mpbiran 709 | . . . 4 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o) ↔ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅) |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅)) |
| 5 | brwitnlem.o | . . . 4 ⊢ 𝑂 Fn 𝑋 | |
| 6 | elpreima 7000 | . . . 4 ⊢ (𝑂 Fn 𝑋 → (〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o)))) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o)) ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ∈ (V ∖ 1o))) |
| 8 | ndmfv 6863 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝑂 → (𝑂‘〈𝐴, 𝐵〉) = ∅) | |
| 9 | 8 | necon1ai 2956 | . . . . 5 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom 𝑂) |
| 10 | 5 | fndmi 6593 | . . . . 5 ⊢ dom 𝑂 = 𝑋 |
| 11 | 9, 10 | eleqtrdi 2843 | . . . 4 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑋) |
| 12 | 11 | pm4.71ri 560 | . . 3 ⊢ ((𝑂‘〈𝐴, 𝐵〉) ≠ ∅ ↔ (〈𝐴, 𝐵〉 ∈ 𝑋 ∧ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅)) |
| 13 | 4, 7, 12 | 3bitr4i 303 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o)) ↔ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅) |
| 14 | brwitnlem.r | . . . 4 ⊢ 𝑅 = (◡𝑂 “ (V ∖ 1o)) | |
| 15 | 14 | breqi 5101 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(◡𝑂 “ (V ∖ 1o))𝐵) |
| 16 | df-br 5096 | . . 3 ⊢ (𝐴(◡𝑂 “ (V ∖ 1o))𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o))) | |
| 17 | 15, 16 | bitri 275 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝑂 “ (V ∖ 1o))) |
| 18 | df-ov 7358 | . . 3 ⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) | |
| 19 | 18 | neeq1i 2993 | . 2 ⊢ ((𝐴𝑂𝐵) ≠ ∅ ↔ (𝑂‘〈𝐴, 𝐵〉) ≠ ∅) |
| 20 | 13, 17, 19 | 3bitr4i 303 | 1 ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 ∅c0 4282 〈cop 4583 class class class wbr 5095 ◡ccnv 5620 dom cdm 5621 “ cima 5624 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 1oc1o 8387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 df-ov 7358 df-1o 8394 |
| This theorem is referenced by: brgic 19190 brric 20428 brlmic 21011 hmph 23711 brgric 48074 brgrlic 48166 |
| Copyright terms: Public domain | W3C validator |