MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwitnlem Structured version   Visualization version   GIF version

Theorem brwitnlem 8126
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
brwitnlem.r 𝑅 = (𝑂 “ (V ∖ 1o))
brwitnlem.o 𝑂 Fn 𝑋
Assertion
Ref Expression
brwitnlem (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)

Proof of Theorem brwitnlem
StepHypRef Expression
1 fvex 6678 . . . . 5 (𝑂‘⟨𝐴, 𝐵⟩) ∈ V
2 dif1o 8119 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o) ↔ ((𝑂‘⟨𝐴, 𝐵⟩) ∈ V ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
31, 2mpbiran 707 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
43anbi2i 624 . . 3 ((⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
5 brwitnlem.o . . . 4 𝑂 Fn 𝑋
6 elpreima 6823 . . . 4 (𝑂 Fn 𝑋 → (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o))))
75, 6ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o)))
8 ndmfv 6695 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝑂 → (𝑂‘⟨𝐴, 𝐵⟩) = ∅)
98necon1ai 3043 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom 𝑂)
10 fndm 6450 . . . . . 6 (𝑂 Fn 𝑋 → dom 𝑂 = 𝑋)
115, 10ax-mp 5 . . . . 5 dom 𝑂 = 𝑋
129, 11eleqtrdi 2923 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑋)
1312pm4.71ri 563 . . 3 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
144, 7, 133bitr4i 305 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
15 brwitnlem.r . . . 4 𝑅 = (𝑂 “ (V ∖ 1o))
1615breqi 5065 . . 3 (𝐴𝑅𝐵𝐴(𝑂 “ (V ∖ 1o))𝐵)
17 df-br 5060 . . 3 (𝐴(𝑂 “ (V ∖ 1o))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)))
1816, 17bitri 277 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)))
19 df-ov 7153 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2019neeq1i 3080 . 2 ((𝐴𝑂𝐵) ≠ ∅ ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
2114, 18, 203bitr4i 305 1 (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  cdif 3933  c0 4291  cop 4567   class class class wbr 5059  ccnv 5549  dom cdm 5550  cima 5553   Fn wfn 6345  cfv 6350  (class class class)co 7150  1oc1o 8089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-fv 6358  df-ov 7153  df-1o 8096
This theorem is referenced by:  brgic  18403  brric  19493  brlmic  19834  hmph  22378
  Copyright terms: Public domain W3C validator