Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgf Structured version   Visualization version   GIF version

Theorem eulerpartlemgf 32979
Description: Lemma for eulerpart 32982: Images under 𝐺 have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemgf (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝑜,𝑥,𝑦,𝑧   𝑓,𝑟,𝐴,𝑜   𝑜,𝐹   𝑜,𝐻,𝑟   𝑓,𝐽   𝑛,𝑟,𝐽,𝑜,𝑥,𝑦   𝑜,𝑀,𝑟   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔,𝑛   𝑅,𝑓,𝑜   𝑇,𝑓,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemgf
StepHypRef Expression
1 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eulerpart.j . . . . . . 7 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
6 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
7 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
8 eulerpart.r . . . . . . 7 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
9 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
10 eulerpart.g . . . . . . 7 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemgv 32973 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1211cnveqd 5831 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1312imaeq1d 6012 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}))
14 nnex 12159 . . . . 5 ℕ ∈ V
15 imassrn 6024 . . . . . 6 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ran 𝐹
164, 5oddpwdc 32954 . . . . . . 7 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
17 f1of 6784 . . . . . . 7 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)⟶ℕ)
18 frn 6675 . . . . . . 7 (𝐹:(𝐽 × ℕ0)⟶ℕ → ran 𝐹 ⊆ ℕ)
1916, 17, 18mp2b 10 . . . . . 6 ran 𝐹 ⊆ ℕ
2015, 19sstri 3953 . . . . 5 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ
21 indpi1 32619 . . . . 5 ((ℕ ∈ V ∧ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ) → (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
2214, 20, 21mp2an 690 . . . 4 (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))
2313, 22eqtrdi 2792 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
24 ffun 6671 . . . . 5 (𝐹:(𝐽 × ℕ0)⟶ℕ → Fun 𝐹)
2516, 17, 24mp2b 10 . . . 4 Fun 𝐹
26 inss2 4189 . . . . 5 (𝒫 (𝐽 × ℕ0) ∩ Fin) ⊆ Fin
271, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemmf 32975 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
281, 2, 3, 4, 5, 6, 7eulerpartlem1 32967 . . . . . . . 8 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
29 f1of 6784 . . . . . . . 8 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
3028, 29ax-mp 5 . . . . . . 7 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin)
3130ffvelcdmi 7034 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3227, 31syl 17 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3326, 32sselid 3942 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin)
34 imafi 9119 . . . 4 ((Fun 𝐹 ∧ (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3525, 33, 34sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3623, 35eqeltrd 2838 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) ∈ Fin)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartgbij 32972 . . . . . . . 8 𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
38 f1of 6784 . . . . . . . 8 (𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅) → 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅))
3937, 38ax-mp 5 . . . . . . 7 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅)
4039ffvelcdmi 7034 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅))
41 elin 3926 . . . . . . 7 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) ↔ ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) ∧ (𝐺𝐴) ∈ 𝑅))
4241simplbi 498 . . . . . 6 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) → (𝐺𝐴) ∈ ({0, 1} ↑m ℕ))
43 elmapi 8787 . . . . . 6 ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) → (𝐺𝐴):ℕ⟶{0, 1})
4440, 42, 433syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴):ℕ⟶{0, 1})
4544ffund 6672 . . . 4 (𝐴 ∈ (𝑇𝑅) → Fun (𝐺𝐴))
46 ssv 3968 . . . . 5 0 ⊆ V
47 dfn2 12426 . . . . . 6 ℕ = (ℕ0 ∖ {0})
48 ssdif 4099 . . . . . 6 (ℕ0 ⊆ V → (ℕ0 ∖ {0}) ⊆ (V ∖ {0}))
4947, 48eqsstrid 3992 . . . . 5 (ℕ0 ⊆ V → ℕ ⊆ (V ∖ {0}))
5046, 49ax-mp 5 . . . 4 ℕ ⊆ (V ∖ {0})
51 sspreima 7018 . . . 4 ((Fun (𝐺𝐴) ∧ ℕ ⊆ (V ∖ {0})) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
5245, 50, 51sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
53 fvex 6855 . . . . 5 (𝐺𝐴) ∈ V
54 0nn0 12428 . . . . 5 0 ∈ ℕ0
55 suppimacnv 8105 . . . . 5 (((𝐺𝐴) ∈ V ∧ 0 ∈ ℕ0) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0})))
5653, 54, 55mp2an 690 . . . 4 ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0}))
57 0ne1 12224 . . . . . . . . 9 0 ≠ 1
58 difprsn1 4760 . . . . . . . . 9 (0 ≠ 1 → ({0, 1} ∖ {0}) = {1})
5957, 58ax-mp 5 . . . . . . . 8 ({0, 1} ∖ {0}) = {1}
6059eqcomi 2745 . . . . . . 7 {1} = ({0, 1} ∖ {0})
6160ffs2 31645 . . . . . 6 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝐺𝐴):ℕ⟶{0, 1}) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6214, 54, 61mp3an12 1451 . . . . 5 ((𝐺𝐴):ℕ⟶{0, 1} → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6344, 62syl 17 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6456, 63eqtr3id 2790 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ (V ∖ {0})) = ((𝐺𝐴) “ {1}))
6552, 64sseqtrd 3984 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1}))
66 ssfi 9117 . 2 ((((𝐺𝐴) “ {1}) ∈ Fin ∧ ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1})) → ((𝐺𝐴) “ ℕ) ∈ Fin)
6736, 65, 66syl2anc 584 1 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  {crab 3407  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586  {cpr 4588   class class class wbr 5105  {copab 5167  cmpt 5188   × cxp 5631  ccnv 5632  ran crn 5634  cres 5635  cima 5636  ccom 5637  Fun wfun 6490  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359   supp csupp 8092  m cmap 8765  Fincfn 8883  0cc0 11051  1c1 11052   · cmul 11056  cle 11190  cn 12153  2c2 12208  0cn0 12413  cexp 13967  Σcsu 15570  cdvds 16136  bitscbits 16299  𝟭cind 32609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-bits 16302  df-ind 32610
This theorem is referenced by:  eulerpartlemgs2  32980
  Copyright terms: Public domain W3C validator