Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgf Structured version   Visualization version   GIF version

Theorem eulerpartlemgf 34370
Description: Lemma for eulerpart 34373: Images under 𝐺 have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemgf (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝑜,𝑥,𝑦,𝑧   𝑓,𝑟,𝐴,𝑜   𝑜,𝐹   𝑜,𝐻,𝑟   𝑓,𝐽   𝑛,𝑟,𝐽,𝑜,𝑥,𝑦   𝑜,𝑀,𝑟   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔,𝑛   𝑅,𝑓,𝑜   𝑇,𝑓,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemgf
StepHypRef Expression
1 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eulerpart.j . . . . . . 7 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
6 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
7 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
8 eulerpart.r . . . . . . 7 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
9 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
10 eulerpart.g . . . . . . 7 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemgv 34364 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1211cnveqd 5839 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1312imaeq1d 6030 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}))
14 nnex 12192 . . . . 5 ℕ ∈ V
15 imassrn 6042 . . . . . 6 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ran 𝐹
164, 5oddpwdc 34345 . . . . . . 7 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
17 f1of 6800 . . . . . . 7 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)⟶ℕ)
18 frn 6695 . . . . . . 7 (𝐹:(𝐽 × ℕ0)⟶ℕ → ran 𝐹 ⊆ ℕ)
1916, 17, 18mp2b 10 . . . . . 6 ran 𝐹 ⊆ ℕ
2015, 19sstri 3956 . . . . 5 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ
21 indpi1 32783 . . . . 5 ((ℕ ∈ V ∧ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ) → (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
2214, 20, 21mp2an 692 . . . 4 (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))
2313, 22eqtrdi 2780 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
24 ffun 6691 . . . . 5 (𝐹:(𝐽 × ℕ0)⟶ℕ → Fun 𝐹)
2516, 17, 24mp2b 10 . . . 4 Fun 𝐹
26 inss2 4201 . . . . 5 (𝒫 (𝐽 × ℕ0) ∩ Fin) ⊆ Fin
271, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemmf 34366 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
281, 2, 3, 4, 5, 6, 7eulerpartlem1 34358 . . . . . . . 8 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
29 f1of 6800 . . . . . . . 8 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
3028, 29ax-mp 5 . . . . . . 7 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin)
3130ffvelcdmi 7055 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3227, 31syl 17 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3326, 32sselid 3944 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin)
34 imafi 9264 . . . 4 ((Fun 𝐹 ∧ (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3525, 33, 34sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3623, 35eqeltrd 2828 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) ∈ Fin)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartgbij 34363 . . . . . . . 8 𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
38 f1of 6800 . . . . . . . 8 (𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅) → 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅))
3937, 38ax-mp 5 . . . . . . 7 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅)
4039ffvelcdmi 7055 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅))
41 elin 3930 . . . . . . 7 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) ↔ ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) ∧ (𝐺𝐴) ∈ 𝑅))
4241simplbi 497 . . . . . 6 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) → (𝐺𝐴) ∈ ({0, 1} ↑m ℕ))
43 elmapi 8822 . . . . . 6 ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) → (𝐺𝐴):ℕ⟶{0, 1})
4440, 42, 433syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴):ℕ⟶{0, 1})
4544ffund 6692 . . . 4 (𝐴 ∈ (𝑇𝑅) → Fun (𝐺𝐴))
46 ssv 3971 . . . . 5 0 ⊆ V
47 dfn2 12455 . . . . . 6 ℕ = (ℕ0 ∖ {0})
48 ssdif 4107 . . . . . 6 (ℕ0 ⊆ V → (ℕ0 ∖ {0}) ⊆ (V ∖ {0}))
4947, 48eqsstrid 3985 . . . . 5 (ℕ0 ⊆ V → ℕ ⊆ (V ∖ {0}))
5046, 49ax-mp 5 . . . 4 ℕ ⊆ (V ∖ {0})
51 sspreima 7040 . . . 4 ((Fun (𝐺𝐴) ∧ ℕ ⊆ (V ∖ {0})) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
5245, 50, 51sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
53 fvex 6871 . . . . 5 (𝐺𝐴) ∈ V
54 0nn0 12457 . . . . 5 0 ∈ ℕ0
55 suppimacnv 8153 . . . . 5 (((𝐺𝐴) ∈ V ∧ 0 ∈ ℕ0) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0})))
5653, 54, 55mp2an 692 . . . 4 ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0}))
57 0ne1 12257 . . . . . . . . 9 0 ≠ 1
58 difprsn1 4764 . . . . . . . . 9 (0 ≠ 1 → ({0, 1} ∖ {0}) = {1})
5957, 58ax-mp 5 . . . . . . . 8 ({0, 1} ∖ {0}) = {1}
6059eqcomi 2738 . . . . . . 7 {1} = ({0, 1} ∖ {0})
6160ffs2 32651 . . . . . 6 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝐺𝐴):ℕ⟶{0, 1}) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6214, 54, 61mp3an12 1453 . . . . 5 ((𝐺𝐴):ℕ⟶{0, 1} → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6344, 62syl 17 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6456, 63eqtr3id 2778 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ (V ∖ {0})) = ((𝐺𝐴) “ {1}))
6552, 64sseqtrd 3983 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1}))
66 ssfi 9137 . 2 ((((𝐺𝐴) “ {1}) ∈ Fin ∧ ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1})) → ((𝐺𝐴) “ ℕ) ∈ Fin)
6736, 65, 66syl2anc 584 1 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  {cpr 4591   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cres 5640  cima 5641  ccom 5642  Fun wfun 6505  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389   supp csupp 8139  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   · cmul 11073  cle 11209  cn 12186  2c2 12241  0cn0 12442  cexp 14026  Σcsu 15652  cdvds 16222  bitscbits 16389  𝟭cind 32773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-bits 16392  df-ind 32774
This theorem is referenced by:  eulerpartlemgs2  34371
  Copyright terms: Public domain W3C validator