Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgf Structured version   Visualization version   GIF version

Theorem eulerpartlemgf 31279
Description: Lemma for eulerpart 31282: Images under 𝐺 have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemgf (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝑜,𝑥,𝑦,𝑧   𝑓,𝑟,𝐴,𝑜   𝑜,𝐹   𝑜,𝐻,𝑟   𝑓,𝐽   𝑛,𝑟,𝐽,𝑜,𝑥,𝑦   𝑜,𝑀,𝑟   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔,𝑛   𝑅,𝑓,𝑜   𝑇,𝑓,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemgf
StepHypRef Expression
1 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eulerpart.j . . . . . . 7 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
6 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
7 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
8 eulerpart.r . . . . . . 7 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
9 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
10 eulerpart.g . . . . . . 7 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemgv 31273 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1211cnveqd 5596 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1312imaeq1d 5769 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}))
14 nnex 11446 . . . . 5 ℕ ∈ V
15 imassrn 5781 . . . . . 6 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ran 𝐹
164, 5oddpwdc 31254 . . . . . . 7 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
17 f1of 6444 . . . . . . 7 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)⟶ℕ)
18 frn 6350 . . . . . . 7 (𝐹:(𝐽 × ℕ0)⟶ℕ → ran 𝐹 ⊆ ℕ)
1916, 17, 18mp2b 10 . . . . . 6 ran 𝐹 ⊆ ℕ
2015, 19sstri 3868 . . . . 5 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ
21 indpi1 30920 . . . . 5 ((ℕ ∈ V ∧ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ) → (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
2214, 20, 21mp2an 679 . . . 4 (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))
2313, 22syl6eq 2831 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
24 ffun 6347 . . . . 5 (𝐹:(𝐽 × ℕ0)⟶ℕ → Fun 𝐹)
2516, 17, 24mp2b 10 . . . 4 Fun 𝐹
26 inss2 4094 . . . . 5 (𝒫 (𝐽 × ℕ0) ∩ Fin) ⊆ Fin
271, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemmf 31275 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
281, 2, 3, 4, 5, 6, 7eulerpartlem1 31267 . . . . . . . 8 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
29 f1of 6444 . . . . . . . 8 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
3028, 29ax-mp 5 . . . . . . 7 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin)
3130ffvelrni 6675 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3227, 31syl 17 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3326, 32sseldi 3857 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin)
34 imafi 8612 . . . 4 ((Fun 𝐹 ∧ (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3525, 33, 34sylancr 578 . . 3 (𝐴 ∈ (𝑇𝑅) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3623, 35eqeltrd 2867 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) ∈ Fin)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartgbij 31272 . . . . . . . 8 𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑𝑚 ℕ) ∩ 𝑅)
38 f1of 6444 . . . . . . . 8 (𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑𝑚 ℕ) ∩ 𝑅) → 𝐺:(𝑇𝑅)⟶(({0, 1} ↑𝑚 ℕ) ∩ 𝑅))
3937, 38ax-mp 5 . . . . . . 7 𝐺:(𝑇𝑅)⟶(({0, 1} ↑𝑚 ℕ) ∩ 𝑅)
4039ffvelrni 6675 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) ∈ (({0, 1} ↑𝑚 ℕ) ∩ 𝑅))
41 elin 4058 . . . . . . 7 ((𝐺𝐴) ∈ (({0, 1} ↑𝑚 ℕ) ∩ 𝑅) ↔ ((𝐺𝐴) ∈ ({0, 1} ↑𝑚 ℕ) ∧ (𝐺𝐴) ∈ 𝑅))
4241simplbi 490 . . . . . 6 ((𝐺𝐴) ∈ (({0, 1} ↑𝑚 ℕ) ∩ 𝑅) → (𝐺𝐴) ∈ ({0, 1} ↑𝑚 ℕ))
43 elmapi 8228 . . . . . 6 ((𝐺𝐴) ∈ ({0, 1} ↑𝑚 ℕ) → (𝐺𝐴):ℕ⟶{0, 1})
4440, 42, 433syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴):ℕ⟶{0, 1})
4544ffund 6348 . . . 4 (𝐴 ∈ (𝑇𝑅) → Fun (𝐺𝐴))
46 ssv 3882 . . . . 5 0 ⊆ V
47 dfn2 11722 . . . . . 6 ℕ = (ℕ0 ∖ {0})
48 ssdif 4007 . . . . . 6 (ℕ0 ⊆ V → (ℕ0 ∖ {0}) ⊆ (V ∖ {0}))
4947, 48syl5eqss 3906 . . . . 5 (ℕ0 ⊆ V → ℕ ⊆ (V ∖ {0}))
5046, 49ax-mp 5 . . . 4 ℕ ⊆ (V ∖ {0})
51 sspreima 30154 . . . 4 ((Fun (𝐺𝐴) ∧ ℕ ⊆ (V ∖ {0})) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
5245, 50, 51sylancl 577 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
53 fvex 6512 . . . . 5 (𝐺𝐴) ∈ V
54 0nn0 11724 . . . . 5 0 ∈ ℕ0
55 suppimacnv 7644 . . . . 5 (((𝐺𝐴) ∈ V ∧ 0 ∈ ℕ0) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0})))
5653, 54, 55mp2an 679 . . . 4 ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0}))
57 0ne1 11511 . . . . . . . . 9 0 ≠ 1
58 difprsn1 4607 . . . . . . . . 9 (0 ≠ 1 → ({0, 1} ∖ {0}) = {1})
5957, 58ax-mp 5 . . . . . . . 8 ({0, 1} ∖ {0}) = {1}
6059eqcomi 2788 . . . . . . 7 {1} = ({0, 1} ∖ {0})
6160ffs2 30216 . . . . . 6 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝐺𝐴):ℕ⟶{0, 1}) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6214, 54, 61mp3an12 1430 . . . . 5 ((𝐺𝐴):ℕ⟶{0, 1} → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6344, 62syl 17 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6456, 63syl5eqr 2829 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ (V ∖ {0})) = ((𝐺𝐴) “ {1}))
6552, 64sseqtrd 3898 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1}))
66 ssfi 8533 . 2 ((((𝐺𝐴) “ {1}) ∈ Fin ∧ ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1})) → ((𝐺𝐴) “ ℕ) ∈ Fin)
6736, 65, 66syl2anc 576 1 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  {cab 2759  wne 2968  wral 3089  {crab 3093  Vcvv 3416  cdif 3827  cin 3829  wss 3830  c0 4179  𝒫 cpw 4422  {csn 4441  {cpr 4443   class class class wbr 4929  {copab 4991  cmpt 5008   × cxp 5405  ccnv 5406  ran crn 5408  cres 5409  cima 5410  ccom 5411  Fun wfun 6182  wf 6184  1-1-ontowf1o 6187  cfv 6188  (class class class)co 6976  cmpo 6978   supp csupp 7633  𝑚 cmap 8206  Fincfn 8306  0cc0 10335  1c1 10336   · cmul 10340  cle 10475  cn 11439  2c2 11495  0cn0 11707  cexp 13244  Σcsu 14903  cdvds 15467  bitscbits 15628  𝟭cind 30910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-ac2 9683  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-disj 4898  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-acn 9165  df-ac 9336  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-rp 12205  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-sum 14904  df-dvds 15468  df-bits 15631  df-ind 30911
This theorem is referenced by:  eulerpartlemgs2  31280
  Copyright terms: Public domain W3C validator