Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgf Structured version   Visualization version   GIF version

Theorem eulerpartlemgf 31536
Description: Lemma for eulerpart 31539: Images under 𝐺 have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemgf (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝑜,𝑥,𝑦,𝑧   𝑓,𝑟,𝐴,𝑜   𝑜,𝐹   𝑜,𝐻,𝑟   𝑓,𝐽   𝑛,𝑟,𝐽,𝑜,𝑥,𝑦   𝑜,𝑀,𝑟   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔,𝑛   𝑅,𝑓,𝑜   𝑇,𝑓,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemgf
StepHypRef Expression
1 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eulerpart.j . . . . . . 7 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
6 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
7 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
8 eulerpart.r . . . . . . 7 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
9 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
10 eulerpart.g . . . . . . 7 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemgv 31530 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1211cnveqd 5739 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1312imaeq1d 5921 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}))
14 nnex 11632 . . . . 5 ℕ ∈ V
15 imassrn 5933 . . . . . 6 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ran 𝐹
164, 5oddpwdc 31511 . . . . . . 7 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
17 f1of 6608 . . . . . . 7 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)⟶ℕ)
18 frn 6513 . . . . . . 7 (𝐹:(𝐽 × ℕ0)⟶ℕ → ran 𝐹 ⊆ ℕ)
1916, 17, 18mp2b 10 . . . . . 6 ran 𝐹 ⊆ ℕ
2015, 19sstri 3973 . . . . 5 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ
21 indpi1 31178 . . . . 5 ((ℕ ∈ V ∧ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ) → (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
2214, 20, 21mp2an 688 . . . 4 (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))
2313, 22syl6eq 2869 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
24 ffun 6510 . . . . 5 (𝐹:(𝐽 × ℕ0)⟶ℕ → Fun 𝐹)
2516, 17, 24mp2b 10 . . . 4 Fun 𝐹
26 inss2 4203 . . . . 5 (𝒫 (𝐽 × ℕ0) ∩ Fin) ⊆ Fin
271, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemmf 31532 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
281, 2, 3, 4, 5, 6, 7eulerpartlem1 31524 . . . . . . . 8 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
29 f1of 6608 . . . . . . . 8 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
3028, 29ax-mp 5 . . . . . . 7 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin)
3130ffvelrni 6842 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3227, 31syl 17 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3326, 32sseldi 3962 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin)
34 imafi 8805 . . . 4 ((Fun 𝐹 ∧ (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3525, 33, 34sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3623, 35eqeltrd 2910 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) ∈ Fin)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartgbij 31529 . . . . . . . 8 𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
38 f1of 6608 . . . . . . . 8 (𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅) → 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅))
3937, 38ax-mp 5 . . . . . . 7 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅)
4039ffvelrni 6842 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅))
41 elin 4166 . . . . . . 7 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) ↔ ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) ∧ (𝐺𝐴) ∈ 𝑅))
4241simplbi 498 . . . . . 6 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) → (𝐺𝐴) ∈ ({0, 1} ↑m ℕ))
43 elmapi 8417 . . . . . 6 ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) → (𝐺𝐴):ℕ⟶{0, 1})
4440, 42, 433syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴):ℕ⟶{0, 1})
4544ffund 6511 . . . 4 (𝐴 ∈ (𝑇𝑅) → Fun (𝐺𝐴))
46 ssv 3988 . . . . 5 0 ⊆ V
47 dfn2 11898 . . . . . 6 ℕ = (ℕ0 ∖ {0})
48 ssdif 4113 . . . . . 6 (ℕ0 ⊆ V → (ℕ0 ∖ {0}) ⊆ (V ∖ {0}))
4947, 48eqsstrid 4012 . . . . 5 (ℕ0 ⊆ V → ℕ ⊆ (V ∖ {0}))
5046, 49ax-mp 5 . . . 4 ℕ ⊆ (V ∖ {0})
51 sspreima 30320 . . . 4 ((Fun (𝐺𝐴) ∧ ℕ ⊆ (V ∖ {0})) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
5245, 50, 51sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
53 fvex 6676 . . . . 5 (𝐺𝐴) ∈ V
54 0nn0 11900 . . . . 5 0 ∈ ℕ0
55 suppimacnv 7830 . . . . 5 (((𝐺𝐴) ∈ V ∧ 0 ∈ ℕ0) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0})))
5653, 54, 55mp2an 688 . . . 4 ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0}))
57 0ne1 11696 . . . . . . . . 9 0 ≠ 1
58 difprsn1 4725 . . . . . . . . 9 (0 ≠ 1 → ({0, 1} ∖ {0}) = {1})
5957, 58ax-mp 5 . . . . . . . 8 ({0, 1} ∖ {0}) = {1}
6059eqcomi 2827 . . . . . . 7 {1} = ({0, 1} ∖ {0})
6160ffs2 30390 . . . . . 6 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝐺𝐴):ℕ⟶{0, 1}) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6214, 54, 61mp3an12 1442 . . . . 5 ((𝐺𝐴):ℕ⟶{0, 1} → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6344, 62syl 17 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6456, 63syl5eqr 2867 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ (V ∖ {0})) = ((𝐺𝐴) “ {1}))
6552, 64sseqtrd 4004 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1}))
66 ssfi 8726 . 2 ((((𝐺𝐴) “ {1}) ∈ Fin ∧ ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1})) → ((𝐺𝐴) “ ℕ) ∈ Fin)
6736, 65, 66syl2anc 584 1 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  {cab 2796  wne 3013  wral 3135  {crab 3139  Vcvv 3492  cdif 3930  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557  {cpr 4559   class class class wbr 5057  {copab 5119  cmpt 5137   × cxp 5546  ccnv 5547  ran crn 5549  cres 5550  cima 5551  ccom 5552  Fun wfun 6342  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  cmpo 7147   supp csupp 7819  m cmap 8395  Fincfn 8497  0cc0 10525  1c1 10526   · cmul 10530  cle 10664  cn 11626  2c2 11680  0cn0 11885  cexp 13417  Σcsu 15030  cdvds 15595  bitscbits 15756  𝟭cind 31168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-dvds 15596  df-bits 15759  df-ind 31169
This theorem is referenced by:  eulerpartlemgs2  31537
  Copyright terms: Public domain W3C validator