Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgf Structured version   Visualization version   GIF version

Theorem eulerpartlemgf 32346
Description: Lemma for eulerpart 32349: Images under 𝐺 have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemgf (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝑜,𝑥,𝑦,𝑧   𝑓,𝑟,𝐴,𝑜   𝑜,𝐹   𝑜,𝐻,𝑟   𝑓,𝐽   𝑛,𝑟,𝐽,𝑜,𝑥,𝑦   𝑜,𝑀,𝑟   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔,𝑛   𝑅,𝑓,𝑜   𝑇,𝑓,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemgf
StepHypRef Expression
1 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eulerpart.j . . . . . . 7 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
6 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
7 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
8 eulerpart.r . . . . . . 7 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
9 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
10 eulerpart.g . . . . . . 7 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemgv 32340 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1211cnveqd 5784 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))))
1312imaeq1d 5968 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}))
14 nnex 11979 . . . . 5 ℕ ∈ V
15 imassrn 5980 . . . . . 6 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ran 𝐹
164, 5oddpwdc 32321 . . . . . . 7 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
17 f1of 6716 . . . . . . 7 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)⟶ℕ)
18 frn 6607 . . . . . . 7 (𝐹:(𝐽 × ℕ0)⟶ℕ → ran 𝐹 ⊆ ℕ)
1916, 17, 18mp2b 10 . . . . . 6 ran 𝐹 ⊆ ℕ
2015, 19sstri 3930 . . . . 5 (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ
21 indpi1 31988 . . . . 5 ((ℕ ∈ V ∧ (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ⊆ ℕ) → (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
2214, 20, 21mp2an 689 . . . 4 (((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽))))
2313, 22eqtrdi 2794 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) = (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))))
24 ffun 6603 . . . . 5 (𝐹:(𝐽 × ℕ0)⟶ℕ → Fun 𝐹)
2516, 17, 24mp2b 10 . . . 4 Fun 𝐹
26 inss2 4163 . . . . 5 (𝒫 (𝐽 × ℕ0) ∩ Fin) ⊆ Fin
271, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemmf 32342 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
281, 2, 3, 4, 5, 6, 7eulerpartlem1 32334 . . . . . . . 8 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
29 f1of 6716 . . . . . . . 8 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) → 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin))
3028, 29ax-mp 5 . . . . . . 7 𝑀:𝐻⟶(𝒫 (𝐽 × ℕ0) ∩ Fin)
3130ffvelrni 6960 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3227, 31syl 17 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ (𝒫 (𝐽 × ℕ0) ∩ Fin))
3326, 32sselid 3919 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin)
34 imafi 8958 . . . 4 ((Fun 𝐹 ∧ (𝑀‘(bits ∘ (𝐴𝐽))) ∈ Fin) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3525, 33, 34sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (𝐹 “ (𝑀‘(bits ∘ (𝐴𝐽)))) ∈ Fin)
3623, 35eqeltrd 2839 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ {1}) ∈ Fin)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10eulerpartgbij 32339 . . . . . . . 8 𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅)
38 f1of 6716 . . . . . . . 8 (𝐺:(𝑇𝑅)–1-1-onto→(({0, 1} ↑m ℕ) ∩ 𝑅) → 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅))
3937, 38ax-mp 5 . . . . . . 7 𝐺:(𝑇𝑅)⟶(({0, 1} ↑m ℕ) ∩ 𝑅)
4039ffvelrni 6960 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅))
41 elin 3903 . . . . . . 7 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) ↔ ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) ∧ (𝐺𝐴) ∈ 𝑅))
4241simplbi 498 . . . . . 6 ((𝐺𝐴) ∈ (({0, 1} ↑m ℕ) ∩ 𝑅) → (𝐺𝐴) ∈ ({0, 1} ↑m ℕ))
43 elmapi 8637 . . . . . 6 ((𝐺𝐴) ∈ ({0, 1} ↑m ℕ) → (𝐺𝐴):ℕ⟶{0, 1})
4440, 42, 433syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐺𝐴):ℕ⟶{0, 1})
4544ffund 6604 . . . 4 (𝐴 ∈ (𝑇𝑅) → Fun (𝐺𝐴))
46 ssv 3945 . . . . 5 0 ⊆ V
47 dfn2 12246 . . . . . 6 ℕ = (ℕ0 ∖ {0})
48 ssdif 4074 . . . . . 6 (ℕ0 ⊆ V → (ℕ0 ∖ {0}) ⊆ (V ∖ {0}))
4947, 48eqsstrid 3969 . . . . 5 (ℕ0 ⊆ V → ℕ ⊆ (V ∖ {0}))
5046, 49ax-mp 5 . . . 4 ℕ ⊆ (V ∖ {0})
51 sspreima 6945 . . . 4 ((Fun (𝐺𝐴) ∧ ℕ ⊆ (V ∖ {0})) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
5245, 50, 51sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ (V ∖ {0})))
53 fvex 6787 . . . . 5 (𝐺𝐴) ∈ V
54 0nn0 12248 . . . . 5 0 ∈ ℕ0
55 suppimacnv 7990 . . . . 5 (((𝐺𝐴) ∈ V ∧ 0 ∈ ℕ0) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0})))
5653, 54, 55mp2an 689 . . . 4 ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ (V ∖ {0}))
57 0ne1 12044 . . . . . . . . 9 0 ≠ 1
58 difprsn1 4733 . . . . . . . . 9 (0 ≠ 1 → ({0, 1} ∖ {0}) = {1})
5957, 58ax-mp 5 . . . . . . . 8 ({0, 1} ∖ {0}) = {1}
6059eqcomi 2747 . . . . . . 7 {1} = ({0, 1} ∖ {0})
6160ffs2 31063 . . . . . 6 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝐺𝐴):ℕ⟶{0, 1}) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6214, 54, 61mp3an12 1450 . . . . 5 ((𝐺𝐴):ℕ⟶{0, 1} → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6344, 62syl 17 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) supp 0) = ((𝐺𝐴) “ {1}))
6456, 63eqtr3id 2792 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ (V ∖ {0})) = ((𝐺𝐴) “ {1}))
6552, 64sseqtrd 3961 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1}))
66 ssfi 8956 . 2 ((((𝐺𝐴) “ {1}) ∈ Fin ∧ ((𝐺𝐴) “ ℕ) ⊆ ((𝐺𝐴) “ {1})) → ((𝐺𝐴) “ ℕ) ∈ Fin)
6736, 65, 66syl2anc 584 1 (𝐴 ∈ (𝑇𝑅) → ((𝐺𝐴) “ ℕ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  {cpr 4563   class class class wbr 5074  {copab 5136  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  cres 5591  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277   supp csupp 7977  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cn 11973  2c2 12028  0cn0 12233  cexp 13782  Σcsu 15397  cdvds 15963  bitscbits 16126  𝟭cind 31978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-bits 16129  df-ind 31979
This theorem is referenced by:  eulerpartlemgs2  32347
  Copyright terms: Public domain W3C validator