MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wspiundisj Structured version   Visualization version   GIF version

Theorem 2wspiundisj 29726
Description: All simple paths of length 2 from a fixed vertex to another vertex are disjunct. (Contributed by Alexander van der Vekens, 5-Mar-2018.) (Revised by AV, 14-May-2021.) (Proof shortened by AV, 9-Jan-2022.)
Assertion
Ref Expression
2wspiundisj Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
Distinct variable groups:   𝐺,𝑏   𝑉,𝑏   𝐺,𝑎   𝑉,𝑎,𝑏

Proof of Theorem 2wspiundisj
Dummy variables 𝑐 𝑡 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . 3 (𝑎 = 𝑐 → (𝑎(2 WSPathsNOn 𝐺)𝑏) = (𝑐(2 WSPathsNOn 𝐺)𝑏))
2 oveq2 7413 . . 3 (𝑏 = 𝑑 → (𝑐(2 WSPathsNOn 𝐺)𝑏) = (𝑐(2 WSPathsNOn 𝐺)𝑑))
3 sneq 4633 . . . 4 (𝑎 = 𝑐 → {𝑎} = {𝑐})
43difeq2d 4117 . . 3 (𝑎 = 𝑐 → (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝑐}))
5 wspthneq1eq2 29623 . . . . 5 ((𝑡 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑏) ∧ 𝑡 ∈ (𝑐(2 WSPathsNOn 𝐺)𝑑)) → (𝑎 = 𝑐𝑏 = 𝑑))
65simpld 494 . . . 4 ((𝑡 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑏) ∧ 𝑡 ∈ (𝑐(2 WSPathsNOn 𝐺)𝑑)) → 𝑎 = 𝑐)
763adant1 1127 . . 3 ((⊤ ∧ 𝑡 ∈ (𝑎(2 WSPathsNOn 𝐺)𝑏) ∧ 𝑡 ∈ (𝑐(2 WSPathsNOn 𝐺)𝑑)) → 𝑎 = 𝑐)
81, 2, 4, 7disjiund 5131 . 2 (⊤ → Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
98mptru 1540 1 Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wtru 1534  wcel 2098  cdif 3940  {csn 4623   ciun 4990  Disj wdisj 5106  (class class class)co 7405  2c2 12271   WSPathsNOn cwwspthsnon 29592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-wlks 29365  df-wlkson 29366  df-trls 29458  df-trlson 29459  df-pths 29482  df-spths 29483  df-pthson 29484  df-spthson 29485  df-wwlksnon 29595  df-wspthsnon 29597
This theorem is referenced by:  frgrhash2wsp  30094
  Copyright terms: Public domain W3C validator