Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumpart Structured version   Visualization version   GIF version

Theorem gsumpart 32925
Description: Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsumpart.b 𝐵 = (Base‘𝐺)
gsumpart.z 0 = (0g𝐺)
gsumpart.g (𝜑𝐺 ∈ CMnd)
gsumpart.a (𝜑𝐴𝑉)
gsumpart.x (𝜑𝑋𝑊)
gsumpart.f (𝜑𝐹:𝐴𝐵)
gsumpart.w (𝜑𝐹 finSupp 0 )
gsumpart.1 (𝜑Disj 𝑥𝑋 𝐶)
gsumpart.2 (𝜑 𝑥𝑋 𝐶 = 𝐴)
Assertion
Ref Expression
gsumpart (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)   0 (𝑥)

Proof of Theorem gsumpart
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpart.b . . 3 𝐵 = (Base‘𝐺)
2 gsumpart.z . . 3 0 = (0g𝐺)
3 gsumpart.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumpart.a . . 3 (𝜑𝐴𝑉)
5 gsumpart.f . . 3 (𝜑𝐹:𝐴𝐵)
6 gsumpart.w . . 3 (𝜑𝐹 finSupp 0 )
7 eqid 2726 . . . 4 𝑥𝑋 ({𝑥} × 𝐶) = 𝑥𝑋 ({𝑥} × 𝐶)
8 gsumpart.x . . . 4 (𝜑𝑋𝑊)
9 gsumpart.1 . . . 4 (𝜑Disj 𝑥𝑋 𝐶)
10 gsumpart.2 . . . 4 (𝜑 𝑥𝑋 𝐶 = 𝐴)
117, 4, 8, 9, 102ndresdjuf1o 32569 . . 3 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)–1-1-onto𝐴)
121, 2, 3, 4, 5, 6, 11gsumf1o 19916 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))))
13 vsnex 5437 . . . . . . 7 {𝑥} ∈ V
1413a1i 11 . . . . . 6 ((𝜑𝑥𝑋) → {𝑥} ∈ V)
154adantr 479 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴𝑉)
16 ssidd 4003 . . . . . . . . . 10 (𝜑𝐴𝐴)
1710, 16eqsstrd 4018 . . . . . . . . 9 (𝜑 𝑥𝑋 𝐶𝐴)
18 iunss 5055 . . . . . . . . 9 ( 𝑥𝑋 𝐶𝐴 ↔ ∀𝑥𝑋 𝐶𝐴)
1917, 18sylib 217 . . . . . . . 8 (𝜑 → ∀𝑥𝑋 𝐶𝐴)
2019r19.21bi 3239 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐶𝐴)
2115, 20ssexd 5331 . . . . . 6 ((𝜑𝑥𝑋) → 𝐶 ∈ V)
2214, 21xpexd 7761 . . . . 5 ((𝜑𝑥𝑋) → ({𝑥} × 𝐶) ∈ V)
2322ralrimiva 3136 . . . 4 (𝜑 → ∀𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
24 iunexg 7979 . . . 4 ((𝑋𝑊 ∧ ∀𝑥𝑋 ({𝑥} × 𝐶) ∈ V) → 𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
258, 23, 24syl2anc 582 . . 3 (𝜑 𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
26 relxp 5702 . . . . . 6 Rel ({𝑥} × 𝐶)
2726a1i 11 . . . . 5 ((𝜑𝑥𝑋) → Rel ({𝑥} × 𝐶))
2827ralrimiva 3136 . . . 4 (𝜑 → ∀𝑥𝑋 Rel ({𝑥} × 𝐶))
29 reliun 5824 . . . 4 (Rel 𝑥𝑋 ({𝑥} × 𝐶) ↔ ∀𝑥𝑋 Rel ({𝑥} × 𝐶))
3028, 29sylibr 233 . . 3 (𝜑 → Rel 𝑥𝑋 ({𝑥} × 𝐶))
31 dmiun 5922 . . . . . 6 dom 𝑥𝑋 ({𝑥} × 𝐶) = 𝑥𝑋 dom ({𝑥} × 𝐶)
32 dmxpss 6184 . . . . . . . 8 dom ({𝑥} × 𝐶) ⊆ {𝑥}
3332rgenw 3055 . . . . . . 7 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ {𝑥}
34 ss2iun 5021 . . . . . . 7 (∀𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ {𝑥} → 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥})
3533, 34ax-mp 5 . . . . . 6 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥}
3631, 35eqsstri 4014 . . . . 5 dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥}
37 iunid 5070 . . . . 5 𝑥𝑋 {𝑥} = 𝑋
3836, 37sseqtri 4016 . . . 4 dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑋
3938a1i 11 . . 3 (𝜑 → dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑋)
40 fo2nd 8026 . . . . . . . 8 2nd :V–onto→V
41 fof 6817 . . . . . . . 8 (2nd :V–onto→V → 2nd :V⟶V)
4240, 41ax-mp 5 . . . . . . 7 2nd :V⟶V
43 ssv 4004 . . . . . . 7 𝑥𝑋 ({𝑥} × 𝐶) ⊆ V
44 fssres 6770 . . . . . . 7 ((2nd :V⟶V ∧ 𝑥𝑋 ({𝑥} × 𝐶) ⊆ V) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V)
4542, 43, 44mp2an 690 . . . . . 6 (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V
46 ffn 6730 . . . . . 6 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶))
4745, 46mp1i 13 . . . . 5 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶))
48 djussxp2 32567 . . . . . . . 8 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝑥𝑋 𝐶)
49 imass2 6114 . . . . . . . 8 ( 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝑥𝑋 𝐶) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ (2nd “ (𝑋 × 𝑥𝑋 𝐶)))
5048, 49ax-mp 5 . . . . . . 7 (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ (2nd “ (𝑋 × 𝑥𝑋 𝐶))
51 ima0 6088 . . . . . . . . . . 11 (2nd “ ∅) = ∅
52 xpeq1 5698 . . . . . . . . . . . . 13 (𝑋 = ∅ → (𝑋 × 𝑥𝑋 𝐶) = (∅ × 𝑥𝑋 𝐶))
53 0xp 5782 . . . . . . . . . . . . 13 (∅ × 𝑥𝑋 𝐶) = ∅
5452, 53eqtrdi 2782 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑥𝑋 𝐶) = ∅)
5554imaeq2d 6071 . . . . . . . . . . 11 (𝑋 = ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = (2nd “ ∅))
56 iuneq1 5019 . . . . . . . . . . . 12 (𝑋 = ∅ → 𝑥𝑋 𝐶 = 𝑥 ∈ ∅ 𝐶)
57 0iun 5073 . . . . . . . . . . . 12 𝑥 ∈ ∅ 𝐶 = ∅
5856, 57eqtrdi 2782 . . . . . . . . . . 11 (𝑋 = ∅ → 𝑥𝑋 𝐶 = ∅)
5951, 55, 583eqtr4a 2792 . . . . . . . . . 10 (𝑋 = ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6059adantl 480 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
61 2ndimaxp 32566 . . . . . . . . . 10 (𝑋 ≠ ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6261adantl 480 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6360, 62pm2.61dane 3019 . . . . . . . 8 (𝜑 → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6463, 10eqtrd 2766 . . . . . . 7 (𝜑 → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝐴)
6550, 64sseqtrid 4032 . . . . . 6 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ 𝐴)
66 resssxp 6283 . . . . . 6 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ 𝐴 ↔ (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴))
6765, 66sylib 217 . . . . 5 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴))
68 dff2 7115 . . . . 5 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴 ↔ ((2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶) ∧ (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴)))
6947, 67, 68sylanbrc 581 . . . 4 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴)
705, 69fcod 6756 . . 3 (𝜑 → (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶))): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐵)
717, 4, 8, 9, 102ndresdju 32568 . . . 4 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)–1-1𝐴)
722fvexi 6917 . . . . 5 0 ∈ V
7372a1i 11 . . . 4 (𝜑0 ∈ V)
745, 4fexd 7246 . . . 4 (𝜑𝐹 ∈ V)
756, 71, 73, 74fsuppco 9447 . . 3 (𝜑 → (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶))) finSupp 0 )
761, 2, 3, 25, 30, 8, 39, 70, 75gsum2d 19972 . 2 (𝜑 → (𝐺 Σg (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))) = (𝐺 Σg (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))))))
77 nfcsb1v 3917 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐶
78 csbeq1a 3906 . . . . . . . . 9 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
798, 21, 77, 78iunsnima2 32541 . . . . . . . 8 ((𝜑𝑦𝑋) → ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) = 𝑦 / 𝑥𝐶)
80 df-ov 7429 . . . . . . . . 9 (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧) = ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩)
8169ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴)
82 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑦𝑋)
83 vsnid 4670 . . . . . . . . . . . . . . 15 𝑦 ∈ {𝑦}
8483a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑦 ∈ {𝑦})
8579eleq2d 2812 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↔ 𝑧𝑦 / 𝑥𝐶))
8685biimpa 475 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑧𝑦 / 𝑥𝐶)
8784, 86opelxpd 5723 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶))
88 nfcv 2892 . . . . . . . . . . . . . . . 16 𝑥{𝑦}
8988, 77nfxp 5717 . . . . . . . . . . . . . . 15 𝑥({𝑦} × 𝑦 / 𝑥𝐶)
9089nfel2 2911 . . . . . . . . . . . . . 14 𝑥𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)
91 sneq 4643 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → {𝑥} = {𝑦})
9291, 78xpeq12d 5715 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} × 𝐶) = ({𝑦} × 𝑦 / 𝑥𝐶))
9392eleq2d 2812 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (⟨𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶) ↔ ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)))
9490, 93rspce 3597 . . . . . . . . . . . . 13 ((𝑦𝑋 ∧ ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)) → ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
9582, 87, 94syl2anc 582 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
96 eliun 5007 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝑋 ({𝑥} × 𝐶) ↔ ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
9795, 96sylibr 233 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ 𝑥𝑋 ({𝑥} × 𝐶))
9881, 97fvco3d 7004 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩) = (𝐹‘((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩)))
9997fvresd 6923 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩) = (2nd ‘⟨𝑦, 𝑧⟩))
100 vex 3466 . . . . . . . . . . . . 13 𝑦 ∈ V
101 vex 3466 . . . . . . . . . . . . 13 𝑧 ∈ V
102100, 101op2nd 8014 . . . . . . . . . . . 12 (2nd ‘⟨𝑦, 𝑧⟩) = 𝑧
10399, 102eqtrdi 2782 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩) = 𝑧)
104103fveq2d 6907 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (𝐹‘((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩)) = (𝐹𝑧))
10598, 104eqtrd 2766 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩) = (𝐹𝑧))
10680, 105eqtrid 2778 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧) = (𝐹𝑧))
10779, 106mpteq12dva 5244 . . . . . . 7 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)) = (𝑧𝑦 / 𝑥𝐶 ↦ (𝐹𝑧)))
1085adantr 479 . . . . . . . 8 ((𝜑𝑦𝑋) → 𝐹:𝐴𝐵)
109 imassrn 6082 . . . . . . . . . 10 ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ⊆ ran 𝑥𝑋 ({𝑥} × 𝐶)
11010xpeq2d 5714 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 × 𝑥𝑋 𝐶) = (𝑋 × 𝐴))
11148, 110sseqtrid 4032 . . . . . . . . . . . . 13 (𝜑 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝐴))
112 rnss 5947 . . . . . . . . . . . . 13 ( 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝐴) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
113111, 112syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
114113adantr 479 . . . . . . . . . . 11 ((𝜑𝑦𝑋) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
115 rnxpss 6185 . . . . . . . . . . 11 ran (𝑋 × 𝐴) ⊆ 𝐴
116114, 115sstrdi 3992 . . . . . . . . . 10 ((𝜑𝑦𝑋) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝐴)
117109, 116sstrid 3991 . . . . . . . . 9 ((𝜑𝑦𝑋) → ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ⊆ 𝐴)
11879, 117eqsstrrd 4019 . . . . . . . 8 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶𝐴)
119108, 118feqresmpt 6974 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦 / 𝑥𝐶) = (𝑧𝑦 / 𝑥𝐶 ↦ (𝐹𝑧)))
120107, 119eqtr4d 2769 . . . . . 6 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)) = (𝐹𝑦 / 𝑥𝐶))
121120oveq2d 7442 . . . . 5 ((𝜑𝑦𝑋) → (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))) = (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
122121mpteq2dva 5255 . . . 4 (𝜑 → (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)))) = (𝑦𝑋 ↦ (𝐺 Σg (𝐹𝑦 / 𝑥𝐶))))
123 nfcv 2892 . . . . 5 𝑦(𝐺 Σg (𝐹𝐶))
124 nfcv 2892 . . . . . 6 𝑥𝐺
125 nfcv 2892 . . . . . 6 𝑥 Σg
126 nfcv 2892 . . . . . . 7 𝑥𝐹
127126, 77nfres 5993 . . . . . 6 𝑥(𝐹𝑦 / 𝑥𝐶)
128124, 125, 127nfov 7456 . . . . 5 𝑥(𝐺 Σg (𝐹𝑦 / 𝑥𝐶))
12978reseq2d 5991 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝐶) = (𝐹𝑦 / 𝑥𝐶))
130129oveq2d 7442 . . . . 5 (𝑥 = 𝑦 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
131123, 128, 130cbvmpt 5266 . . . 4 (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶))) = (𝑦𝑋 ↦ (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
132122, 131eqtr4di 2784 . . 3 (𝜑 → (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)))) = (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶))))
133132oveq2d 7442 . 2 (𝜑 → (𝐺 Σg (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))))) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
13412, 76, 1333eqtrd 2770 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  Vcvv 3462  csb 3892  wss 3947  c0 4325  {csn 4633  cop 4639   ciun 5003  Disj wdisj 5120   class class class wbr 5155  cmpt 5238   × cxp 5682  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  ccom 5688  Rel wrel 5689   Fn wfn 6551  wf 6552  ontowfo 6554  cfv 6556  (class class class)co 7426  2nd c2nd 8004   finSupp cfsupp 9407  Basecbs 17215  0gc0g 17456   Σg cgsu 17457  CMndccmn 19780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-disj 5121  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8005  df-2nd 8006  df-supp 8177  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-fsupp 9408  df-oi 9555  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-fzo 13684  df-seq 14024  df-hash 14350  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-submnd 18776  df-mulg 19064  df-cntz 19313  df-cmn 19782
This theorem is referenced by:  elrspunidl  33305
  Copyright terms: Public domain W3C validator