Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumpart Structured version   Visualization version   GIF version

Theorem gsumpart 30826
Description: Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsumpart.b 𝐵 = (Base‘𝐺)
gsumpart.z 0 = (0g𝐺)
gsumpart.g (𝜑𝐺 ∈ CMnd)
gsumpart.a (𝜑𝐴𝑉)
gsumpart.x (𝜑𝑋𝑊)
gsumpart.f (𝜑𝐹:𝐴𝐵)
gsumpart.w (𝜑𝐹 finSupp 0 )
gsumpart.1 (𝜑Disj 𝑥𝑋 𝐶)
gsumpart.2 (𝜑 𝑥𝑋 𝐶 = 𝐴)
Assertion
Ref Expression
gsumpart (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)   0 (𝑥)

Proof of Theorem gsumpart
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpart.b . . 3 𝐵 = (Base‘𝐺)
2 gsumpart.z . . 3 0 = (0g𝐺)
3 gsumpart.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumpart.a . . 3 (𝜑𝐴𝑉)
5 gsumpart.f . . 3 (𝜑𝐹:𝐴𝐵)
6 gsumpart.w . . 3 (𝜑𝐹 finSupp 0 )
7 eqid 2759 . . . 4 𝑥𝑋 ({𝑥} × 𝐶) = 𝑥𝑋 ({𝑥} × 𝐶)
8 gsumpart.x . . . 4 (𝜑𝑋𝑊)
9 gsumpart.1 . . . 4 (𝜑Disj 𝑥𝑋 𝐶)
10 gsumpart.2 . . . 4 (𝜑 𝑥𝑋 𝐶 = 𝐴)
117, 4, 8, 9, 102ndresdjuf1o 30495 . . 3 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)–1-1-onto𝐴)
121, 2, 3, 4, 5, 6, 11gsumf1o 19089 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))))
13 snex 5293 . . . . . . 7 {𝑥} ∈ V
1413a1i 11 . . . . . 6 ((𝜑𝑥𝑋) → {𝑥} ∈ V)
154adantr 485 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴𝑉)
16 ssidd 3911 . . . . . . . . . 10 (𝜑𝐴𝐴)
1710, 16eqsstrd 3926 . . . . . . . . 9 (𝜑 𝑥𝑋 𝐶𝐴)
18 iunss 4927 . . . . . . . . 9 ( 𝑥𝑋 𝐶𝐴 ↔ ∀𝑥𝑋 𝐶𝐴)
1917, 18sylib 221 . . . . . . . 8 (𝜑 → ∀𝑥𝑋 𝐶𝐴)
2019r19.21bi 3135 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐶𝐴)
2115, 20ssexd 5187 . . . . . 6 ((𝜑𝑥𝑋) → 𝐶 ∈ V)
2214, 21xpexd 7465 . . . . 5 ((𝜑𝑥𝑋) → ({𝑥} × 𝐶) ∈ V)
2322ralrimiva 3111 . . . 4 (𝜑 → ∀𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
24 iunexg 7661 . . . 4 ((𝑋𝑊 ∧ ∀𝑥𝑋 ({𝑥} × 𝐶) ∈ V) → 𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
258, 23, 24syl2anc 588 . . 3 (𝜑 𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
26 relxp 5535 . . . . . 6 Rel ({𝑥} × 𝐶)
2726a1i 11 . . . . 5 ((𝜑𝑥𝑋) → Rel ({𝑥} × 𝐶))
2827ralrimiva 3111 . . . 4 (𝜑 → ∀𝑥𝑋 Rel ({𝑥} × 𝐶))
29 reliun 5651 . . . 4 (Rel 𝑥𝑋 ({𝑥} × 𝐶) ↔ ∀𝑥𝑋 Rel ({𝑥} × 𝐶))
3028, 29sylibr 237 . . 3 (𝜑 → Rel 𝑥𝑋 ({𝑥} × 𝐶))
31 dmiun 5746 . . . . . 6 dom 𝑥𝑋 ({𝑥} × 𝐶) = 𝑥𝑋 dom ({𝑥} × 𝐶)
32 dmxpss 5993 . . . . . . . 8 dom ({𝑥} × 𝐶) ⊆ {𝑥}
3332rgenw 3080 . . . . . . 7 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ {𝑥}
34 ss2iun 4894 . . . . . . 7 (∀𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ {𝑥} → 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥})
3533, 34ax-mp 5 . . . . . 6 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥}
3631, 35eqsstri 3922 . . . . 5 dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥}
37 iunid 4942 . . . . 5 𝑥𝑋 {𝑥} = 𝑋
3836, 37sseqtri 3924 . . . 4 dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑋
3938a1i 11 . . 3 (𝜑 → dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑋)
40 fo2nd 7707 . . . . . . . 8 2nd :V–onto→V
41 fof 6569 . . . . . . . 8 (2nd :V–onto→V → 2nd :V⟶V)
4240, 41ax-mp 5 . . . . . . 7 2nd :V⟶V
43 ssv 3912 . . . . . . 7 𝑥𝑋 ({𝑥} × 𝐶) ⊆ V
44 fssres 6522 . . . . . . 7 ((2nd :V⟶V ∧ 𝑥𝑋 ({𝑥} × 𝐶) ⊆ V) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V)
4542, 43, 44mp2an 692 . . . . . 6 (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V
46 ffn 6491 . . . . . 6 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶))
4745, 46mp1i 13 . . . . 5 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶))
48 djussxp2 30493 . . . . . . . 8 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝑥𝑋 𝐶)
49 imass2 5930 . . . . . . . 8 ( 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝑥𝑋 𝐶) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ (2nd “ (𝑋 × 𝑥𝑋 𝐶)))
5048, 49ax-mp 5 . . . . . . 7 (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ (2nd “ (𝑋 × 𝑥𝑋 𝐶))
51 ima0 5910 . . . . . . . . . . 11 (2nd “ ∅) = ∅
52 xpeq1 5531 . . . . . . . . . . . . 13 (𝑋 = ∅ → (𝑋 × 𝑥𝑋 𝐶) = (∅ × 𝑥𝑋 𝐶))
53 0xp 5611 . . . . . . . . . . . . 13 (∅ × 𝑥𝑋 𝐶) = ∅
5452, 53eqtrdi 2810 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑥𝑋 𝐶) = ∅)
5554imaeq2d 5894 . . . . . . . . . . 11 (𝑋 = ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = (2nd “ ∅))
56 iuneq1 4892 . . . . . . . . . . . 12 (𝑋 = ∅ → 𝑥𝑋 𝐶 = 𝑥 ∈ ∅ 𝐶)
57 0iun 4944 . . . . . . . . . . . 12 𝑥 ∈ ∅ 𝐶 = ∅
5856, 57eqtrdi 2810 . . . . . . . . . . 11 (𝑋 = ∅ → 𝑥𝑋 𝐶 = ∅)
5951, 55, 583eqtr4a 2820 . . . . . . . . . 10 (𝑋 = ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6059adantl 486 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
61 2ndimaxp 30492 . . . . . . . . . 10 (𝑋 ≠ ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6261adantl 486 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6360, 62pm2.61dane 3036 . . . . . . . 8 (𝜑 → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6463, 10eqtrd 2794 . . . . . . 7 (𝜑 → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝐴)
6550, 64sseqtrid 3940 . . . . . 6 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ 𝐴)
66 resssxp 6092 . . . . . 6 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ 𝐴 ↔ (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴))
6765, 66sylib 221 . . . . 5 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴))
68 dff2 6849 . . . . 5 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴 ↔ ((2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶) ∧ (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴)))
6947, 67, 68sylanbrc 587 . . . 4 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴)
705, 69fcod 6510 . . 3 (𝜑 → (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶))): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐵)
717, 4, 8, 9, 102ndresdju 30494 . . . 4 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)–1-1𝐴)
722fvexi 6665 . . . . 5 0 ∈ V
7372a1i 11 . . . 4 (𝜑0 ∈ V)
745, 4fexd 6974 . . . 4 (𝜑𝐹 ∈ V)
756, 71, 73, 74fsuppco 8884 . . 3 (𝜑 → (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶))) finSupp 0 )
761, 2, 3, 25, 30, 8, 39, 70, 75gsum2d 19145 . 2 (𝜑 → (𝐺 Σg (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))) = (𝐺 Σg (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))))))
77 nfcsb1v 3825 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐶
78 csbeq1a 3815 . . . . . . . . 9 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
798, 21, 77, 78iunsnima2 30466 . . . . . . . 8 ((𝜑𝑦𝑋) → ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) = 𝑦 / 𝑥𝐶)
80 df-ov 7146 . . . . . . . . 9 (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧) = ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩)
8169ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴)
82 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑦𝑋)
83 vsnid 4552 . . . . . . . . . . . . . . 15 𝑦 ∈ {𝑦}
8483a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑦 ∈ {𝑦})
8579eleq2d 2836 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↔ 𝑧𝑦 / 𝑥𝐶))
8685biimpa 481 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑧𝑦 / 𝑥𝐶)
8784, 86opelxpd 5555 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶))
88 nfcv 2917 . . . . . . . . . . . . . . . 16 𝑥{𝑦}
8988, 77nfxp 5550 . . . . . . . . . . . . . . 15 𝑥({𝑦} × 𝑦 / 𝑥𝐶)
9089nfel2 2935 . . . . . . . . . . . . . 14 𝑥𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)
91 sneq 4525 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → {𝑥} = {𝑦})
9291, 78xpeq12d 5548 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} × 𝐶) = ({𝑦} × 𝑦 / 𝑥𝐶))
9392eleq2d 2836 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (⟨𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶) ↔ ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)))
9490, 93rspce 3528 . . . . . . . . . . . . 13 ((𝑦𝑋 ∧ ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)) → ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
9582, 87, 94syl2anc 588 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
96 eliun 4880 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝑋 ({𝑥} × 𝐶) ↔ ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
9795, 96sylibr 237 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ 𝑥𝑋 ({𝑥} × 𝐶))
9881, 97fvco3d 6745 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩) = (𝐹‘((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩)))
9997fvresd 6671 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩) = (2nd ‘⟨𝑦, 𝑧⟩))
100 vex 3411 . . . . . . . . . . . . 13 𝑦 ∈ V
101 vex 3411 . . . . . . . . . . . . 13 𝑧 ∈ V
102100, 101op2nd 7695 . . . . . . . . . . . 12 (2nd ‘⟨𝑦, 𝑧⟩) = 𝑧
10399, 102eqtrdi 2810 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩) = 𝑧)
104103fveq2d 6655 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (𝐹‘((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩)) = (𝐹𝑧))
10598, 104eqtrd 2794 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩) = (𝐹𝑧))
10680, 105syl5eq 2806 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧) = (𝐹𝑧))
10779, 106mpteq12dva 5109 . . . . . . 7 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)) = (𝑧𝑦 / 𝑥𝐶 ↦ (𝐹𝑧)))
1085adantr 485 . . . . . . . 8 ((𝜑𝑦𝑋) → 𝐹:𝐴𝐵)
109 imassrn 5905 . . . . . . . . . 10 ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ⊆ ran 𝑥𝑋 ({𝑥} × 𝐶)
11010xpeq2d 5547 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 × 𝑥𝑋 𝐶) = (𝑋 × 𝐴))
11148, 110sseqtrid 3940 . . . . . . . . . . . . 13 (𝜑 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝐴))
112 rnss 5773 . . . . . . . . . . . . 13 ( 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝐴) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
113111, 112syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
114113adantr 485 . . . . . . . . . . 11 ((𝜑𝑦𝑋) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
115 rnxpss 5994 . . . . . . . . . . 11 ran (𝑋 × 𝐴) ⊆ 𝐴
116114, 115sstrdi 3900 . . . . . . . . . 10 ((𝜑𝑦𝑋) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝐴)
117109, 116sstrid 3899 . . . . . . . . 9 ((𝜑𝑦𝑋) → ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ⊆ 𝐴)
11879, 117eqsstrrd 3927 . . . . . . . 8 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶𝐴)
119108, 118feqresmpt 6715 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦 / 𝑥𝐶) = (𝑧𝑦 / 𝑥𝐶 ↦ (𝐹𝑧)))
120107, 119eqtr4d 2797 . . . . . 6 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)) = (𝐹𝑦 / 𝑥𝐶))
121120oveq2d 7159 . . . . 5 ((𝜑𝑦𝑋) → (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))) = (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
122121mpteq2dva 5120 . . . 4 (𝜑 → (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)))) = (𝑦𝑋 ↦ (𝐺 Σg (𝐹𝑦 / 𝑥𝐶))))
123 nfcv 2917 . . . . 5 𝑦(𝐺 Σg (𝐹𝐶))
124 nfcv 2917 . . . . . 6 𝑥𝐺
125 nfcv 2917 . . . . . 6 𝑥 Σg
126 nfcv 2917 . . . . . . 7 𝑥𝐹
127126, 77nfres 5818 . . . . . 6 𝑥(𝐹𝑦 / 𝑥𝐶)
128124, 125, 127nfov 7173 . . . . 5 𝑥(𝐺 Σg (𝐹𝑦 / 𝑥𝐶))
12978reseq2d 5816 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝐶) = (𝐹𝑦 / 𝑥𝐶))
130129oveq2d 7159 . . . . 5 (𝑥 = 𝑦 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
131123, 128, 130cbvmpt 5126 . . . 4 (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶))) = (𝑦𝑋 ↦ (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
132122, 131eqtr4di 2812 . . 3 (𝜑 → (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)))) = (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶))))
133132oveq2d 7159 . 2 (𝜑 → (𝐺 Σg (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))))) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
13412, 76, 1333eqtrd 2798 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wne 2949  wral 3068  wrex 3069  Vcvv 3407  csb 3801  wss 3854  c0 4221  {csn 4515  cop 4521   ciun 4876  Disj wdisj 4990   class class class wbr 5025  cmpt 5105   × cxp 5515  dom cdm 5517  ran crn 5518  cres 5519  cima 5520  ccom 5521  Rel wrel 5522   Fn wfn 6323  wf 6324  ontowfo 6326  cfv 6328  (class class class)co 7143  2nd c2nd 7685   finSupp cfsupp 8851  Basecbs 16526  0gc0g 16756   Σg cgsu 16757  CMndccmn 18958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-disj 4991  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-of 7398  df-om 7573  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-fsupp 8852  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-fzo 13068  df-seq 13404  df-hash 13726  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-0g 16758  df-gsum 16759  df-mre 16900  df-mrc 16901  df-acs 16903  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-mulg 18277  df-cntz 18499  df-cmn 18960
This theorem is referenced by:  elrspunidl  31112
  Copyright terms: Public domain W3C validator