Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumpart Structured version   Visualization version   GIF version

Theorem gsumpart 32997
Description: Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsumpart.b 𝐵 = (Base‘𝐺)
gsumpart.z 0 = (0g𝐺)
gsumpart.g (𝜑𝐺 ∈ CMnd)
gsumpart.a (𝜑𝐴𝑉)
gsumpart.x (𝜑𝑋𝑊)
gsumpart.f (𝜑𝐹:𝐴𝐵)
gsumpart.w (𝜑𝐹 finSupp 0 )
gsumpart.1 (𝜑Disj 𝑥𝑋 𝐶)
gsumpart.2 (𝜑 𝑥𝑋 𝐶 = 𝐴)
Assertion
Ref Expression
gsumpart (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)   0 (𝑥)

Proof of Theorem gsumpart
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpart.b . . 3 𝐵 = (Base‘𝐺)
2 gsumpart.z . . 3 0 = (0g𝐺)
3 gsumpart.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumpart.a . . 3 (𝜑𝐴𝑉)
5 gsumpart.f . . 3 (𝜑𝐹:𝐴𝐵)
6 gsumpart.w . . 3 (𝜑𝐹 finSupp 0 )
7 eqid 2729 . . . 4 𝑥𝑋 ({𝑥} × 𝐶) = 𝑥𝑋 ({𝑥} × 𝐶)
8 gsumpart.x . . . 4 (𝜑𝑋𝑊)
9 gsumpart.1 . . . 4 (𝜑Disj 𝑥𝑋 𝐶)
10 gsumpart.2 . . . 4 (𝜑 𝑥𝑋 𝐶 = 𝐴)
117, 4, 8, 9, 102ndresdjuf1o 32574 . . 3 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)–1-1-onto𝐴)
121, 2, 3, 4, 5, 6, 11gsumf1o 19846 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))))
13 vsnex 5389 . . . . . . 7 {𝑥} ∈ V
1413a1i 11 . . . . . 6 ((𝜑𝑥𝑋) → {𝑥} ∈ V)
154adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴𝑉)
16 ssidd 3970 . . . . . . . . . 10 (𝜑𝐴𝐴)
1710, 16eqsstrd 3981 . . . . . . . . 9 (𝜑 𝑥𝑋 𝐶𝐴)
18 iunss 5009 . . . . . . . . 9 ( 𝑥𝑋 𝐶𝐴 ↔ ∀𝑥𝑋 𝐶𝐴)
1917, 18sylib 218 . . . . . . . 8 (𝜑 → ∀𝑥𝑋 𝐶𝐴)
2019r19.21bi 3229 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐶𝐴)
2115, 20ssexd 5279 . . . . . 6 ((𝜑𝑥𝑋) → 𝐶 ∈ V)
2214, 21xpexd 7727 . . . . 5 ((𝜑𝑥𝑋) → ({𝑥} × 𝐶) ∈ V)
2322ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
24 iunexg 7942 . . . 4 ((𝑋𝑊 ∧ ∀𝑥𝑋 ({𝑥} × 𝐶) ∈ V) → 𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
258, 23, 24syl2anc 584 . . 3 (𝜑 𝑥𝑋 ({𝑥} × 𝐶) ∈ V)
26 relxp 5656 . . . . . 6 Rel ({𝑥} × 𝐶)
2726a1i 11 . . . . 5 ((𝜑𝑥𝑋) → Rel ({𝑥} × 𝐶))
2827ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝑋 Rel ({𝑥} × 𝐶))
29 reliun 5779 . . . 4 (Rel 𝑥𝑋 ({𝑥} × 𝐶) ↔ ∀𝑥𝑋 Rel ({𝑥} × 𝐶))
3028, 29sylibr 234 . . 3 (𝜑 → Rel 𝑥𝑋 ({𝑥} × 𝐶))
31 dmiun 5877 . . . . . 6 dom 𝑥𝑋 ({𝑥} × 𝐶) = 𝑥𝑋 dom ({𝑥} × 𝐶)
32 dmxpss 6144 . . . . . . . 8 dom ({𝑥} × 𝐶) ⊆ {𝑥}
3332rgenw 3048 . . . . . . 7 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ {𝑥}
34 ss2iun 4974 . . . . . . 7 (∀𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ {𝑥} → 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥})
3533, 34ax-mp 5 . . . . . 6 𝑥𝑋 dom ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥}
3631, 35eqsstri 3993 . . . . 5 dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑥𝑋 {𝑥}
37 iunid 5024 . . . . 5 𝑥𝑋 {𝑥} = 𝑋
3836, 37sseqtri 3995 . . . 4 dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑋
3938a1i 11 . . 3 (𝜑 → dom 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝑋)
40 fo2nd 7989 . . . . . . . 8 2nd :V–onto→V
41 fof 6772 . . . . . . . 8 (2nd :V–onto→V → 2nd :V⟶V)
4240, 41ax-mp 5 . . . . . . 7 2nd :V⟶V
43 ssv 3971 . . . . . . 7 𝑥𝑋 ({𝑥} × 𝐶) ⊆ V
44 fssres 6726 . . . . . . 7 ((2nd :V⟶V ∧ 𝑥𝑋 ({𝑥} × 𝐶) ⊆ V) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V)
4542, 43, 44mp2an 692 . . . . . 6 (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V
46 ffn 6688 . . . . . 6 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶V → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶))
4745, 46mp1i 13 . . . . 5 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶))
48 djussxp2 32572 . . . . . . . 8 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝑥𝑋 𝐶)
49 imass2 6073 . . . . . . . 8 ( 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝑥𝑋 𝐶) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ (2nd “ (𝑋 × 𝑥𝑋 𝐶)))
5048, 49ax-mp 5 . . . . . . 7 (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ (2nd “ (𝑋 × 𝑥𝑋 𝐶))
51 ima0 6048 . . . . . . . . . . 11 (2nd “ ∅) = ∅
52 xpeq1 5652 . . . . . . . . . . . . 13 (𝑋 = ∅ → (𝑋 × 𝑥𝑋 𝐶) = (∅ × 𝑥𝑋 𝐶))
53 0xp 5737 . . . . . . . . . . . . 13 (∅ × 𝑥𝑋 𝐶) = ∅
5452, 53eqtrdi 2780 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑥𝑋 𝐶) = ∅)
5554imaeq2d 6031 . . . . . . . . . . 11 (𝑋 = ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = (2nd “ ∅))
56 iuneq1 4972 . . . . . . . . . . . 12 (𝑋 = ∅ → 𝑥𝑋 𝐶 = 𝑥 ∈ ∅ 𝐶)
57 0iun 5027 . . . . . . . . . . . 12 𝑥 ∈ ∅ 𝐶 = ∅
5856, 57eqtrdi 2780 . . . . . . . . . . 11 (𝑋 = ∅ → 𝑥𝑋 𝐶 = ∅)
5951, 55, 583eqtr4a 2790 . . . . . . . . . 10 (𝑋 = ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6059adantl 481 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
61 2ndimaxp 32570 . . . . . . . . . 10 (𝑋 ≠ ∅ → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6261adantl 481 . . . . . . . . 9 ((𝜑𝑋 ≠ ∅) → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6360, 62pm2.61dane 3012 . . . . . . . 8 (𝜑 → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝑥𝑋 𝐶)
6463, 10eqtrd 2764 . . . . . . 7 (𝜑 → (2nd “ (𝑋 × 𝑥𝑋 𝐶)) = 𝐴)
6550, 64sseqtrid 3989 . . . . . 6 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ 𝐴)
66 resssxp 6243 . . . . . 6 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ 𝐴 ↔ (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴))
6765, 66sylib 218 . . . . 5 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴))
68 dff2 7071 . . . . 5 ((2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴 ↔ ((2nd 𝑥𝑋 ({𝑥} × 𝐶)) Fn 𝑥𝑋 ({𝑥} × 𝐶) ∧ (2nd 𝑥𝑋 ({𝑥} × 𝐶)) ⊆ ( 𝑥𝑋 ({𝑥} × 𝐶) × 𝐴)))
6947, 67, 68sylanbrc 583 . . . 4 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴)
705, 69fcod 6713 . . 3 (𝜑 → (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶))): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐵)
717, 4, 8, 9, 102ndresdju 32573 . . . 4 (𝜑 → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)–1-1𝐴)
722fvexi 6872 . . . . 5 0 ∈ V
7372a1i 11 . . . 4 (𝜑0 ∈ V)
745, 4fexd 7201 . . . 4 (𝜑𝐹 ∈ V)
756, 71, 73, 74fsuppco 9353 . . 3 (𝜑 → (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶))) finSupp 0 )
761, 2, 3, 25, 30, 8, 39, 70, 75gsum2d 19902 . 2 (𝜑 → (𝐺 Σg (𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))) = (𝐺 Σg (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))))))
77 nfcsb1v 3886 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐶
78 csbeq1a 3876 . . . . . . . . 9 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
798, 21, 77, 78iunsnima2 32547 . . . . . . . 8 ((𝜑𝑦𝑋) → ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) = 𝑦 / 𝑥𝐶)
80 df-ov 7390 . . . . . . . . 9 (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧) = ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩)
8169ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (2nd 𝑥𝑋 ({𝑥} × 𝐶)): 𝑥𝑋 ({𝑥} × 𝐶)⟶𝐴)
82 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑦𝑋)
83 vsnid 4627 . . . . . . . . . . . . . . 15 𝑦 ∈ {𝑦}
8483a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑦 ∈ {𝑦})
8579eleq2d 2814 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↔ 𝑧𝑦 / 𝑥𝐶))
8685biimpa 476 . . . . . . . . . . . . . 14 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → 𝑧𝑦 / 𝑥𝐶)
8784, 86opelxpd 5677 . . . . . . . . . . . . 13 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶))
88 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑥{𝑦}
8988, 77nfxp 5671 . . . . . . . . . . . . . . 15 𝑥({𝑦} × 𝑦 / 𝑥𝐶)
9089nfel2 2910 . . . . . . . . . . . . . 14 𝑥𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)
91 sneq 4599 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → {𝑥} = {𝑦})
9291, 78xpeq12d 5669 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} × 𝐶) = ({𝑦} × 𝑦 / 𝑥𝐶))
9392eleq2d 2814 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (⟨𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶) ↔ ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)))
9490, 93rspce 3577 . . . . . . . . . . . . 13 ((𝑦𝑋 ∧ ⟨𝑦, 𝑧⟩ ∈ ({𝑦} × 𝑦 / 𝑥𝐶)) → ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
9582, 87, 94syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
96 eliun 4959 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝑋 ({𝑥} × 𝐶) ↔ ∃𝑥𝑋𝑦, 𝑧⟩ ∈ ({𝑥} × 𝐶))
9795, 96sylibr 234 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ⟨𝑦, 𝑧⟩ ∈ 𝑥𝑋 ({𝑥} × 𝐶))
9881, 97fvco3d 6961 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩) = (𝐹‘((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩)))
9997fvresd 6878 . . . . . . . . . . . 12 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩) = (2nd ‘⟨𝑦, 𝑧⟩))
100 vex 3451 . . . . . . . . . . . . 13 𝑦 ∈ V
101 vex 3451 . . . . . . . . . . . . 13 𝑧 ∈ V
102100, 101op2nd 7977 . . . . . . . . . . . 12 (2nd ‘⟨𝑦, 𝑧⟩) = 𝑧
10399, 102eqtrdi 2780 . . . . . . . . . . 11 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩) = 𝑧)
104103fveq2d 6862 . . . . . . . . . 10 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (𝐹‘((2nd 𝑥𝑋 ({𝑥} × 𝐶))‘⟨𝑦, 𝑧⟩)) = (𝐹𝑧))
10598, 104eqtrd 2764 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → ((𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))‘⟨𝑦, 𝑧⟩) = (𝐹𝑧))
10680, 105eqtrid 2776 . . . . . . . 8 (((𝜑𝑦𝑋) ∧ 𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦})) → (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧) = (𝐹𝑧))
10779, 106mpteq12dva 5193 . . . . . . 7 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)) = (𝑧𝑦 / 𝑥𝐶 ↦ (𝐹𝑧)))
1085adantr 480 . . . . . . . 8 ((𝜑𝑦𝑋) → 𝐹:𝐴𝐵)
109 imassrn 6042 . . . . . . . . . 10 ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ⊆ ran 𝑥𝑋 ({𝑥} × 𝐶)
11010xpeq2d 5668 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 × 𝑥𝑋 𝐶) = (𝑋 × 𝐴))
11148, 110sseqtrid 3989 . . . . . . . . . . . . 13 (𝜑 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝐴))
112 rnss 5903 . . . . . . . . . . . . 13 ( 𝑥𝑋 ({𝑥} × 𝐶) ⊆ (𝑋 × 𝐴) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
113111, 112syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
114113adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝑋) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ ran (𝑋 × 𝐴))
115 rnxpss 6145 . . . . . . . . . . 11 ran (𝑋 × 𝐴) ⊆ 𝐴
116114, 115sstrdi 3959 . . . . . . . . . 10 ((𝜑𝑦𝑋) → ran 𝑥𝑋 ({𝑥} × 𝐶) ⊆ 𝐴)
117109, 116sstrid 3958 . . . . . . . . 9 ((𝜑𝑦𝑋) → ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ⊆ 𝐴)
11879, 117eqsstrrd 3982 . . . . . . . 8 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶𝐴)
119108, 118feqresmpt 6930 . . . . . . 7 ((𝜑𝑦𝑋) → (𝐹𝑦 / 𝑥𝐶) = (𝑧𝑦 / 𝑥𝐶 ↦ (𝐹𝑧)))
120107, 119eqtr4d 2767 . . . . . 6 ((𝜑𝑦𝑋) → (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)) = (𝐹𝑦 / 𝑥𝐶))
121120oveq2d 7403 . . . . 5 ((𝜑𝑦𝑋) → (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))) = (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
122121mpteq2dva 5200 . . . 4 (𝜑 → (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)))) = (𝑦𝑋 ↦ (𝐺 Σg (𝐹𝑦 / 𝑥𝐶))))
123 nfcv 2891 . . . . 5 𝑦(𝐺 Σg (𝐹𝐶))
124 nfcv 2891 . . . . . 6 𝑥𝐺
125 nfcv 2891 . . . . . 6 𝑥 Σg
126 nfcv 2891 . . . . . . 7 𝑥𝐹
127126, 77nfres 5952 . . . . . 6 𝑥(𝐹𝑦 / 𝑥𝐶)
128124, 125, 127nfov 7417 . . . . 5 𝑥(𝐺 Σg (𝐹𝑦 / 𝑥𝐶))
12978reseq2d 5950 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝐶) = (𝐹𝑦 / 𝑥𝐶))
130129oveq2d 7403 . . . . 5 (𝑥 = 𝑦 → (𝐺 Σg (𝐹𝐶)) = (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
131123, 128, 130cbvmpt 5209 . . . 4 (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶))) = (𝑦𝑋 ↦ (𝐺 Σg (𝐹𝑦 / 𝑥𝐶)))
132122, 131eqtr4di 2782 . . 3 (𝜑 → (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧)))) = (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶))))
133132oveq2d 7403 . 2 (𝜑 → (𝐺 Σg (𝑦𝑋 ↦ (𝐺 Σg (𝑧 ∈ ( 𝑥𝑋 ({𝑥} × 𝐶) “ {𝑦}) ↦ (𝑦(𝐹 ∘ (2nd 𝑥𝑋 ({𝑥} × 𝐶)))𝑧))))) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
13412, 76, 1333eqtrd 2768 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  csb 3862  wss 3914  c0 4296  {csn 4589  cop 4595   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642  Rel wrel 5643   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  2nd c2nd 7967   finSupp cfsupp 9312  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712
This theorem is referenced by:  elrspunidl  33399
  Copyright terms: Public domain W3C validator