Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndimaxp Structured version   Visualization version   GIF version

Theorem 2ndimaxp 32514
Description: Image of a cartesian product by 2nd. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
2ndimaxp (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem 2ndimaxp
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 6081 . . . 4 (2nd “ ∅) = ∅
2 xpeq2 5699 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
3 xp0 6164 . . . . . 6 (𝐴 × ∅) = ∅
42, 3eqtrdi 2781 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
54imaeq2d 6064 . . . 4 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = (2nd “ ∅))
6 id 22 . . . 4 (𝐵 = ∅ → 𝐵 = ∅)
71, 5, 63eqtr4a 2791 . . 3 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
87adantl 480 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 = ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
9 xpnz 6165 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
10 fo2nd 8015 . . . . . . 7 2nd :V–onto→V
11 fofn 6812 . . . . . . 7 (2nd :V–onto→V → 2nd Fn V)
1210, 11mp1i 13 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → 2nd Fn V)
13 ssv 4001 . . . . . . 7 (𝐴 × 𝐵) ⊆ V
1413a1i 11 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ⊆ V)
1512, 14fvelimabd 6971 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
169, 15sylbi 216 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
17 simpr 483 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) = 𝑦)
18 xp2nd 8027 . . . . . . . 8 (𝑝 ∈ (𝐴 × 𝐵) → (2nd𝑝) ∈ 𝐵)
1918ad2antlr 725 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) ∈ 𝐵)
2017, 19eqeltrrd 2826 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → 𝑦𝐵)
2120r19.29an 3147 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦) → 𝑦𝐵)
22 n0 4346 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2322biimpi 215 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
2423ad2antrr 724 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑥 𝑥𝐴)
25 opelxpi 5715 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2625ancoms 457 . . . . . . . 8 ((𝑦𝐵𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2726adantll 712 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
28 fveqeq2 6905 . . . . . . . 8 (𝑝 = ⟨𝑥, 𝑦⟩ → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
2928adantl 480 . . . . . . 7 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
30 vex 3465 . . . . . . . . 9 𝑥 ∈ V
31 vex 3465 . . . . . . . . 9 𝑦 ∈ V
3230, 31op2nd 8003 . . . . . . . 8 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
3332a1i 11 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦)
3427, 29, 33rspcedvd 3608 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3524, 34exlimddv 1930 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3621, 35impbida 799 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦𝑦𝐵))
3716, 36bitrd 278 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ 𝑦𝐵))
3837eqrdv 2723 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
398, 38pm2.61dane 3018 1 (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2929  wrex 3059  Vcvv 3461  wss 3944  c0 4322  cop 4636   × cxp 5676  cima 5681   Fn wfn 6544  ontowfo 6547  cfv 6549  2nd c2nd 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557  df-2nd 7995
This theorem is referenced by:  gsumpart  32859
  Copyright terms: Public domain W3C validator