Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndimaxp Structured version   Visualization version   GIF version

Theorem 2ndimaxp 32630
Description: Image of a cartesian product by 2nd. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
2ndimaxp (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem 2ndimaxp
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 6030 . . . 4 (2nd “ ∅) = ∅
2 xpeq2 5640 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
3 xp0 5719 . . . . . 6 (𝐴 × ∅) = ∅
42, 3eqtrdi 2784 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
54imaeq2d 6013 . . . 4 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = (2nd “ ∅))
6 id 22 . . . 4 (𝐵 = ∅ → 𝐵 = ∅)
71, 5, 63eqtr4a 2794 . . 3 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
87adantl 481 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 = ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
9 xpnz 6111 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
10 fo2nd 7948 . . . . . . 7 2nd :V–onto→V
11 fofn 6742 . . . . . . 7 (2nd :V–onto→V → 2nd Fn V)
1210, 11mp1i 13 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → 2nd Fn V)
13 ssv 3955 . . . . . . 7 (𝐴 × 𝐵) ⊆ V
1413a1i 11 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ⊆ V)
1512, 14fvelimabd 6901 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
169, 15sylbi 217 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
17 simpr 484 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) = 𝑦)
18 xp2nd 7960 . . . . . . . 8 (𝑝 ∈ (𝐴 × 𝐵) → (2nd𝑝) ∈ 𝐵)
1918ad2antlr 727 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) ∈ 𝐵)
2017, 19eqeltrrd 2834 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → 𝑦𝐵)
2120r19.29an 3137 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦) → 𝑦𝐵)
22 n0 4302 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2322biimpi 216 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
2423ad2antrr 726 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑥 𝑥𝐴)
25 opelxpi 5656 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2625ancoms 458 . . . . . . . 8 ((𝑦𝐵𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2726adantll 714 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
28 fveqeq2 6837 . . . . . . . 8 (𝑝 = ⟨𝑥, 𝑦⟩ → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
2928adantl 481 . . . . . . 7 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
30 vex 3441 . . . . . . . . 9 𝑥 ∈ V
31 vex 3441 . . . . . . . . 9 𝑦 ∈ V
3230, 31op2nd 7936 . . . . . . . 8 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
3332a1i 11 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦)
3427, 29, 33rspcedvd 3575 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3524, 34exlimddv 1936 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3621, 35impbida 800 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦𝑦𝐵))
3716, 36bitrd 279 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ 𝑦𝐵))
3837eqrdv 2731 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
398, 38pm2.61dane 3016 1 (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  wss 3898  c0 4282  cop 4581   × cxp 5617  cima 5622   Fn wfn 6481  ontowfo 6484  cfv 6486  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-2nd 7928
This theorem is referenced by:  gsumpart  33044
  Copyright terms: Public domain W3C validator