Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndimaxp Structured version   Visualization version   GIF version

Theorem 2ndimaxp 30657
Description: Image of a cartesian product by 2nd. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
2ndimaxp (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem 2ndimaxp
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 5930 . . . 4 (2nd “ ∅) = ∅
2 xpeq2 5557 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
3 xp0 6001 . . . . . 6 (𝐴 × ∅) = ∅
42, 3eqtrdi 2787 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
54imaeq2d 5914 . . . 4 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = (2nd “ ∅))
6 id 22 . . . 4 (𝐵 = ∅ → 𝐵 = ∅)
71, 5, 63eqtr4a 2797 . . 3 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
87adantl 485 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 = ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
9 xpnz 6002 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
10 fo2nd 7760 . . . . . . 7 2nd :V–onto→V
11 fofn 6613 . . . . . . 7 (2nd :V–onto→V → 2nd Fn V)
1210, 11mp1i 13 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → 2nd Fn V)
13 ssv 3911 . . . . . . 7 (𝐴 × 𝐵) ⊆ V
1413a1i 11 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ⊆ V)
1512, 14fvelimabd 6763 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
169, 15sylbi 220 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
17 simpr 488 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) = 𝑦)
18 xp2nd 7772 . . . . . . . 8 (𝑝 ∈ (𝐴 × 𝐵) → (2nd𝑝) ∈ 𝐵)
1918ad2antlr 727 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) ∈ 𝐵)
2017, 19eqeltrrd 2832 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → 𝑦𝐵)
2120r19.29an 3197 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦) → 𝑦𝐵)
22 n0 4247 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2322biimpi 219 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
2423ad2antrr 726 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑥 𝑥𝐴)
25 opelxpi 5573 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2625ancoms 462 . . . . . . . 8 ((𝑦𝐵𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2726adantll 714 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
28 fveqeq2 6704 . . . . . . . 8 (𝑝 = ⟨𝑥, 𝑦⟩ → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
2928adantl 485 . . . . . . 7 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
30 vex 3402 . . . . . . . . 9 𝑥 ∈ V
31 vex 3402 . . . . . . . . 9 𝑦 ∈ V
3230, 31op2nd 7748 . . . . . . . 8 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
3332a1i 11 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦)
3427, 29, 33rspcedvd 3530 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3524, 34exlimddv 1943 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3621, 35impbida 801 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦𝑦𝐵))
3716, 36bitrd 282 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ 𝑦𝐵))
3837eqrdv 2734 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
398, 38pm2.61dane 3019 1 (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wne 2932  wrex 3052  Vcvv 3398  wss 3853  c0 4223  cop 4533   × cxp 5534  cima 5539   Fn wfn 6353  ontowfo 6356  cfv 6358  2nd c2nd 7738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364  df-fv 6366  df-2nd 7740
This theorem is referenced by:  gsumpart  30988
  Copyright terms: Public domain W3C validator