Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndimaxp Structured version   Visualization version   GIF version

Theorem 2ndimaxp 30963
Description: Image of a cartesian product by 2nd. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
2ndimaxp (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem 2ndimaxp
Dummy variables 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 5982 . . . 4 (2nd “ ∅) = ∅
2 xpeq2 5609 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
3 xp0 6058 . . . . . 6 (𝐴 × ∅) = ∅
42, 3eqtrdi 2795 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
54imaeq2d 5966 . . . 4 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = (2nd “ ∅))
6 id 22 . . . 4 (𝐵 = ∅ → 𝐵 = ∅)
71, 5, 63eqtr4a 2805 . . 3 (𝐵 = ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
87adantl 481 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 = ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
9 xpnz 6059 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
10 fo2nd 7838 . . . . . . 7 2nd :V–onto→V
11 fofn 6686 . . . . . . 7 (2nd :V–onto→V → 2nd Fn V)
1210, 11mp1i 13 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → 2nd Fn V)
13 ssv 3949 . . . . . . 7 (𝐴 × 𝐵) ⊆ V
1413a1i 11 . . . . . 6 ((𝐴 × 𝐵) ≠ ∅ → (𝐴 × 𝐵) ⊆ V)
1512, 14fvelimabd 6836 . . . . 5 ((𝐴 × 𝐵) ≠ ∅ → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
169, 15sylbi 216 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦))
17 simpr 484 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) = 𝑦)
18 xp2nd 7850 . . . . . . . 8 (𝑝 ∈ (𝐴 × 𝐵) → (2nd𝑝) ∈ 𝐵)
1918ad2antlr 723 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → (2nd𝑝) ∈ 𝐵)
2017, 19eqeltrrd 2841 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑝 ∈ (𝐴 × 𝐵)) ∧ (2nd𝑝) = 𝑦) → 𝑦𝐵)
2120r19.29an 3218 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦) → 𝑦𝐵)
22 n0 4285 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2322biimpi 215 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
2423ad2antrr 722 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑥 𝑥𝐴)
25 opelxpi 5625 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2625ancoms 458 . . . . . . . 8 ((𝑦𝐵𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2726adantll 710 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
28 fveqeq2 6777 . . . . . . . 8 (𝑝 = ⟨𝑥, 𝑦⟩ → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
2928adantl 481 . . . . . . 7 (((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((2nd𝑝) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
30 vex 3434 . . . . . . . . 9 𝑥 ∈ V
31 vex 3434 . . . . . . . . 9 𝑦 ∈ V
3230, 31op2nd 7826 . . . . . . . 8 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
3332a1i 11 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦)
3427, 29, 33rspcedvd 3563 . . . . . 6 ((((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) ∧ 𝑥𝐴) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3524, 34exlimddv 1941 . . . . 5 (((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ∧ 𝑦𝐵) → ∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦)
3621, 35impbida 797 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (∃𝑝 ∈ (𝐴 × 𝐵)(2nd𝑝) = 𝑦𝑦𝐵))
3716, 36bitrd 278 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝑦 ∈ (2nd “ (𝐴 × 𝐵)) ↔ 𝑦𝐵))
3837eqrdv 2737 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (2nd “ (𝐴 × 𝐵)) = 𝐵)
398, 38pm2.61dane 3033 1 (𝐴 ≠ ∅ → (2nd “ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wex 1785  wcel 2109  wne 2944  wrex 3066  Vcvv 3430  wss 3891  c0 4261  cop 4572   × cxp 5586  cima 5591   Fn wfn 6425  ontowfo 6428  cfv 6430  2nd c2nd 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fo 6436  df-fv 6438  df-2nd 7818
This theorem is referenced by:  gsumpart  31294
  Copyright terms: Public domain W3C validator