Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndimaxp Structured version   Visualization version   GIF version

Theorem 2ndimaxp 31609
Description: Image of a cartesian product by 2nd. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
2ndimaxp (š“ ā‰  āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)

Proof of Theorem 2ndimaxp
Dummy variables š‘ š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 6030 . . . 4 (2nd ā€œ āˆ…) = āˆ…
2 xpeq2 5655 . . . . . 6 (šµ = āˆ… ā†’ (š“ Ɨ šµ) = (š“ Ɨ āˆ…))
3 xp0 6111 . . . . . 6 (š“ Ɨ āˆ…) = āˆ…
42, 3eqtrdi 2789 . . . . 5 (šµ = āˆ… ā†’ (š“ Ɨ šµ) = āˆ…)
54imaeq2d 6014 . . . 4 (šµ = āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = (2nd ā€œ āˆ…))
6 id 22 . . . 4 (šµ = āˆ… ā†’ šµ = āˆ…)
71, 5, 63eqtr4a 2799 . . 3 (šµ = āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
87adantl 483 . 2 ((š“ ā‰  āˆ… āˆ§ šµ = āˆ…) ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
9 xpnz 6112 . . . . 5 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†” (š“ Ɨ šµ) ā‰  āˆ…)
10 fo2nd 7943 . . . . . . 7 2nd :Vā€“ontoā†’V
11 fofn 6759 . . . . . . 7 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
1210, 11mp1i 13 . . . . . 6 ((š“ Ɨ šµ) ā‰  āˆ… ā†’ 2nd Fn V)
13 ssv 3969 . . . . . . 7 (š“ Ɨ šµ) āŠ† V
1413a1i 11 . . . . . 6 ((š“ Ɨ šµ) ā‰  āˆ… ā†’ (š“ Ɨ šµ) āŠ† V)
1512, 14fvelimabd 6916 . . . . 5 ((š“ Ɨ šµ) ā‰  āˆ… ā†’ (š‘¦ āˆˆ (2nd ā€œ (š“ Ɨ šµ)) ā†” āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦))
169, 15sylbi 216 . . . 4 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (š‘¦ āˆˆ (2nd ā€œ (š“ Ɨ šµ)) ā†” āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦))
17 simpr 486 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘ āˆˆ (š“ Ɨ šµ)) āˆ§ (2nd ā€˜š‘) = š‘¦) ā†’ (2nd ā€˜š‘) = š‘¦)
18 xp2nd 7955 . . . . . . . 8 (š‘ āˆˆ (š“ Ɨ šµ) ā†’ (2nd ā€˜š‘) āˆˆ šµ)
1918ad2antlr 726 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘ āˆˆ (š“ Ɨ šµ)) āˆ§ (2nd ā€˜š‘) = š‘¦) ā†’ (2nd ā€˜š‘) āˆˆ šµ)
2017, 19eqeltrrd 2835 . . . . . 6 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘ āˆˆ (š“ Ɨ šµ)) āˆ§ (2nd ā€˜š‘) = š‘¦) ā†’ š‘¦ āˆˆ šµ)
2120r19.29an 3152 . . . . 5 (((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦) ā†’ š‘¦ āˆˆ šµ)
22 n0 4307 . . . . . . . 8 (š“ ā‰  āˆ… ā†” āˆƒš‘„ š‘„ āˆˆ š“)
2322biimpi 215 . . . . . . 7 (š“ ā‰  āˆ… ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
2423ad2antrr 725 . . . . . 6 (((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
25 opelxpi 5671 . . . . . . . . 9 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
2625ancoms 460 . . . . . . . 8 ((š‘¦ āˆˆ šµ āˆ§ š‘„ āˆˆ š“) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
2726adantll 713 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
28 fveqeq2 6852 . . . . . . . 8 (š‘ = āŸØš‘„, š‘¦āŸ© ā†’ ((2nd ā€˜š‘) = š‘¦ ā†” (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦))
2928adantl 483 . . . . . . 7 (((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) āˆ§ š‘ = āŸØš‘„, š‘¦āŸ©) ā†’ ((2nd ā€˜š‘) = š‘¦ ā†” (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦))
30 vex 3448 . . . . . . . . 9 š‘„ āˆˆ V
31 vex 3448 . . . . . . . . 9 š‘¦ āˆˆ V
3230, 31op2nd 7931 . . . . . . . 8 (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦
3332a1i 11 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) ā†’ (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦)
3427, 29, 33rspcedvd 3582 . . . . . 6 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) ā†’ āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦)
3524, 34exlimddv 1939 . . . . 5 (((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) ā†’ āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦)
3621, 35impbida 800 . . . 4 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦ ā†” š‘¦ āˆˆ šµ))
3716, 36bitrd 279 . . 3 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (š‘¦ āˆˆ (2nd ā€œ (š“ Ɨ šµ)) ā†” š‘¦ āˆˆ šµ))
3837eqrdv 2731 . 2 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
398, 38pm2.61dane 3029 1 (š“ ā‰  āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 397   = wceq 1542  āˆƒwex 1782   āˆˆ wcel 2107   ā‰  wne 2940  āˆƒwrex 3070  Vcvv 3444   āŠ† wss 3911  āˆ…c0 4283  āŸØcop 4593   Ɨ cxp 5632   ā€œ cima 5637   Fn wfn 6492  ā€“ontoā†’wfo 6495  ā€˜cfv 6497  2nd c2nd 7921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fo 6503  df-fv 6505  df-2nd 7923
This theorem is referenced by:  gsumpart  31946
  Copyright terms: Public domain W3C validator