Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndimaxp Structured version   Visualization version   GIF version

Theorem 2ndimaxp 31859
Description: Image of a cartesian product by 2nd. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Assertion
Ref Expression
2ndimaxp (š“ ā‰  āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)

Proof of Theorem 2ndimaxp
Dummy variables š‘ š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 6073 . . . 4 (2nd ā€œ āˆ…) = āˆ…
2 xpeq2 5696 . . . . . 6 (šµ = āˆ… ā†’ (š“ Ɨ šµ) = (š“ Ɨ āˆ…))
3 xp0 6154 . . . . . 6 (š“ Ɨ āˆ…) = āˆ…
42, 3eqtrdi 2788 . . . . 5 (šµ = āˆ… ā†’ (š“ Ɨ šµ) = āˆ…)
54imaeq2d 6057 . . . 4 (šµ = āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = (2nd ā€œ āˆ…))
6 id 22 . . . 4 (šµ = āˆ… ā†’ šµ = āˆ…)
71, 5, 63eqtr4a 2798 . . 3 (šµ = āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
87adantl 482 . 2 ((š“ ā‰  āˆ… āˆ§ šµ = āˆ…) ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
9 xpnz 6155 . . . . 5 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†” (š“ Ɨ šµ) ā‰  āˆ…)
10 fo2nd 7992 . . . . . . 7 2nd :Vā€“ontoā†’V
11 fofn 6804 . . . . . . 7 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
1210, 11mp1i 13 . . . . . 6 ((š“ Ɨ šµ) ā‰  āˆ… ā†’ 2nd Fn V)
13 ssv 4005 . . . . . . 7 (š“ Ɨ šµ) āŠ† V
1413a1i 11 . . . . . 6 ((š“ Ɨ šµ) ā‰  āˆ… ā†’ (š“ Ɨ šµ) āŠ† V)
1512, 14fvelimabd 6962 . . . . 5 ((š“ Ɨ šµ) ā‰  āˆ… ā†’ (š‘¦ āˆˆ (2nd ā€œ (š“ Ɨ šµ)) ā†” āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦))
169, 15sylbi 216 . . . 4 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (š‘¦ āˆˆ (2nd ā€œ (š“ Ɨ šµ)) ā†” āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦))
17 simpr 485 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘ āˆˆ (š“ Ɨ šµ)) āˆ§ (2nd ā€˜š‘) = š‘¦) ā†’ (2nd ā€˜š‘) = š‘¦)
18 xp2nd 8004 . . . . . . . 8 (š‘ āˆˆ (š“ Ɨ šµ) ā†’ (2nd ā€˜š‘) āˆˆ šµ)
1918ad2antlr 725 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘ āˆˆ (š“ Ɨ šµ)) āˆ§ (2nd ā€˜š‘) = š‘¦) ā†’ (2nd ā€˜š‘) āˆˆ šµ)
2017, 19eqeltrrd 2834 . . . . . 6 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘ āˆˆ (š“ Ɨ šµ)) āˆ§ (2nd ā€˜š‘) = š‘¦) ā†’ š‘¦ āˆˆ šµ)
2120r19.29an 3158 . . . . 5 (((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦) ā†’ š‘¦ āˆˆ šµ)
22 n0 4345 . . . . . . . 8 (š“ ā‰  āˆ… ā†” āˆƒš‘„ š‘„ āˆˆ š“)
2322biimpi 215 . . . . . . 7 (š“ ā‰  āˆ… ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
2423ad2antrr 724 . . . . . 6 (((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
25 opelxpi 5712 . . . . . . . . 9 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
2625ancoms 459 . . . . . . . 8 ((š‘¦ āˆˆ šµ āˆ§ š‘„ āˆˆ š“) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
2726adantll 712 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
28 fveqeq2 6897 . . . . . . . 8 (š‘ = āŸØš‘„, š‘¦āŸ© ā†’ ((2nd ā€˜š‘) = š‘¦ ā†” (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦))
2928adantl 482 . . . . . . 7 (((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) āˆ§ š‘ = āŸØš‘„, š‘¦āŸ©) ā†’ ((2nd ā€˜š‘) = š‘¦ ā†” (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦))
30 vex 3478 . . . . . . . . 9 š‘„ āˆˆ V
31 vex 3478 . . . . . . . . 9 š‘¦ āˆˆ V
3230, 31op2nd 7980 . . . . . . . 8 (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦
3332a1i 11 . . . . . . 7 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) ā†’ (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦)
3427, 29, 33rspcedvd 3614 . . . . . 6 ((((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) āˆ§ š‘„ āˆˆ š“) ā†’ āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦)
3524, 34exlimddv 1938 . . . . 5 (((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) āˆ§ š‘¦ āˆˆ šµ) ā†’ āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦)
3621, 35impbida 799 . . . 4 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (āˆƒš‘ āˆˆ (š“ Ɨ šµ)(2nd ā€˜š‘) = š‘¦ ā†” š‘¦ āˆˆ šµ))
3716, 36bitrd 278 . . 3 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (š‘¦ āˆˆ (2nd ā€œ (š“ Ɨ šµ)) ā†” š‘¦ āˆˆ šµ))
3837eqrdv 2730 . 2 ((š“ ā‰  āˆ… āˆ§ šµ ā‰  āˆ…) ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
398, 38pm2.61dane 3029 1 (š“ ā‰  āˆ… ā†’ (2nd ā€œ (š“ Ɨ šµ)) = šµ)
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   = wceq 1541  āˆƒwex 1781   āˆˆ wcel 2106   ā‰  wne 2940  āˆƒwrex 3070  Vcvv 3474   āŠ† wss 3947  āˆ…c0 4321  āŸØcop 4633   Ɨ cxp 5673   ā€œ cima 5678   Fn wfn 6535  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-2nd 7972
This theorem is referenced by:  gsumpart  32194
  Copyright terms: Public domain W3C validator