Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvepres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
Ref | Expression |
---|---|
br1cossxrncnvepres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 36662 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | brcnvep 36475 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢)) | |
3 | 2 | elv 3443 | . . . . 5 ⊢ (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢) |
4 | 3 | anbi1i 625 | . . . 4 ⊢ ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvep 36475 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢)) | |
6 | 5 | elv 3443 | . . . . 5 ⊢ (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢) |
7 | 6 | anbi1i 625 | . . . 4 ⊢ ((𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 628 | . . 3 ⊢ (((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3094 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 ∃wrex 3071 Vcvv 3437 〈cop 4571 class class class wbr 5081 E cep 5505 ◡ccnv 5599 ↾ cres 5602 ⋉ cxrn 36380 ≀ ccoss 36381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fo 6464 df-fv 6466 df-1st 7863 df-2nd 7864 df-xrn 36585 df-coss 36625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |