![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvepres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
Ref | Expression |
---|---|
br1cossxrncnvepres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 37785 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | brcnvep 37600 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢)) | |
3 | 2 | elv 3479 | . . . . 5 ⊢ (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvep 37600 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢)) | |
6 | 5 | elv 3479 | . . . . 5 ⊢ (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢) |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 626 | . . 3 ⊢ (((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3093 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 〈cop 4634 class class class wbr 5148 E cep 5579 ◡ccnv 5675 ↾ cres 5678 ⋉ cxrn 37509 ≀ ccoss 37510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7979 df-2nd 7980 df-xrn 37708 df-coss 37748 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |