Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrncnvepres Structured version   Visualization version   GIF version

Theorem br1cossxrncnvepres 38448
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.)
Assertion
Ref Expression
br1cossxrncnvepres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrncnvepres
StepHypRef Expression
1 br1cossxrnres 38444 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷))))
2 brcnvep 38261 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐶𝐶𝑢))
32elv 3486 . . . . 5 (𝑢 E 𝐶𝐶𝑢)
43anbi1i 624 . . . 4 ((𝑢 E 𝐶𝑢𝑅𝐵) ↔ (𝐶𝑢𝑢𝑅𝐵))
5 brcnvep 38261 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐸𝐸𝑢))
65elv 3486 . . . . 5 (𝑢 E 𝐸𝐸𝑢)
76anbi1i 624 . . . 4 ((𝑢 E 𝐸𝑢𝑅𝐷) ↔ (𝐸𝑢𝑢𝑅𝐷))
84, 7anbi12i 628 . . 3 (((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷)) ↔ ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷)))
98rexbii 3094 . 2 (∃𝑢𝐴 ((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷)) ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷)))
101, 9bitrdi 287 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wrex 3070  Vcvv 3481  cop 4640   class class class wbr 5151   E cep 5592  ccnv 5692  cres 5695  cxrn 38175  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-eprel 5593  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fo 6575  df-fv 6577  df-1st 8022  df-2nd 8023  df-xrn 38367  df-coss 38407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator