![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvepres | Structured version Visualization version GIF version |
Description: ⟨𝐵, 𝐶⟩ and ⟨𝐷, 𝐸⟩ are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
Ref | Expression |
---|---|
br1cossxrncnvepres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 37857 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | brcnvep 37672 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢)) | |
3 | 2 | elv 3475 | . . . . 5 ⊢ (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvep 37672 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢)) | |
6 | 5 | elv 3475 | . . . . 5 ⊢ (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢) |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 626 | . . 3 ⊢ (((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3089 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 ⟨cop 4630 class class class wbr 5142 E cep 5575 ◡ccnv 5671 ↾ cres 5674 ⋉ cxrn 37582 ≀ ccoss 37583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7987 df-2nd 7988 df-xrn 37780 df-coss 37820 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |