Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrncnvepres Structured version   Visualization version   GIF version

Theorem br1cossxrncnvepres 38357
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.)
Assertion
Ref Expression
br1cossxrncnvepres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrncnvepres
StepHypRef Expression
1 br1cossxrnres 38353 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷))))
2 brcnvep 38170 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐶𝐶𝑢))
32elv 3488 . . . . 5 (𝑢 E 𝐶𝐶𝑢)
43anbi1i 623 . . . 4 ((𝑢 E 𝐶𝑢𝑅𝐵) ↔ (𝐶𝑢𝑢𝑅𝐵))
5 brcnvep 38170 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐸𝐸𝑢))
65elv 3488 . . . . 5 (𝑢 E 𝐸𝐸𝑢)
76anbi1i 623 . . . 4 ((𝑢 E 𝐸𝑢𝑅𝐷) ↔ (𝐸𝑢𝑢𝑅𝐷))
84, 7anbi12i 627 . . 3 (((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷)) ↔ ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷)))
98rexbii 3096 . 2 (∃𝑢𝐴 ((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷)) ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷)))
101, 9bitrdi 287 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2103  wrex 3072  Vcvv 3482  cop 4654   class class class wbr 5169   E cep 5602  ccnv 5698  cres 5701  cxrn 38083  ccoss 38084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-eprel 5603  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-fo 6578  df-fv 6580  df-1st 8026  df-2nd 8027  df-xrn 38276  df-coss 38316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator