| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmdju | Structured version Visualization version GIF version | ||
| Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| dmdju.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) |
| Ref | Expression |
|---|---|
| dmdju | ⊢ (𝜑 → dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmiun 5893 | . . 3 ⊢ dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 dom ({𝑥} × 𝐵) | |
| 2 | dmdju.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) | |
| 3 | dmxp 5908 | . . . . 5 ⊢ (𝐵 ≠ ∅ → dom ({𝑥} × 𝐵) = {𝑥}) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom ({𝑥} × 𝐵) = {𝑥}) |
| 5 | 4 | iuneq2dv 4992 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 dom ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑥}) |
| 6 | 1, 5 | eqtrid 2782 | . 2 ⊢ (𝜑 → dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑥}) |
| 7 | iunid 5036 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 8 | 6, 7 | eqtrdi 2786 | 1 ⊢ (𝜑 → dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 {csn 4601 ∪ ciun 4967 × cxp 5652 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-iun 4969 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 |
| This theorem is referenced by: gsumwrd2dccat 33007 |
| Copyright terms: Public domain | W3C validator |