Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmdju Structured version   Visualization version   GIF version

Theorem dmdju 32663
Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypothesis
Ref Expression
dmdju.1 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
dmdju (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dmdju
StepHypRef Expression
1 dmiun 5926 . . 3 dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 dom ({𝑥} × 𝐵)
2 dmdju.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
3 dmxp 5941 . . . . 5 (𝐵 ≠ ∅ → dom ({𝑥} × 𝐵) = {𝑥})
42, 3syl 17 . . . 4 ((𝜑𝑥𝐴) → dom ({𝑥} × 𝐵) = {𝑥})
54iuneq2dv 5020 . . 3 (𝜑 𝑥𝐴 dom ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
61, 5eqtrid 2786 . 2 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
7 iunid 5064 . 2 𝑥𝐴 {𝑥} = 𝐴
86, 7eqtrdi 2790 1 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  c0 4338  {csn 4630   ciun 4995   × cxp 5686  dom cdm 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-11 2154  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-iun 4997  df-br 5148  df-opab 5210  df-xp 5694  df-dm 5698
This theorem is referenced by:  gsumwrd2dccat  33052
  Copyright terms: Public domain W3C validator