Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmdju Structured version   Visualization version   GIF version

Theorem dmdju 32578
Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypothesis
Ref Expression
dmdju.1 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
dmdju (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dmdju
StepHypRef Expression
1 dmiun 5880 . . 3 dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 dom ({𝑥} × 𝐵)
2 dmdju.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
3 dmxp 5895 . . . . 5 (𝐵 ≠ ∅ → dom ({𝑥} × 𝐵) = {𝑥})
42, 3syl 17 . . . 4 ((𝜑𝑥𝐴) → dom ({𝑥} × 𝐵) = {𝑥})
54iuneq2dv 4983 . . 3 (𝜑 𝑥𝐴 dom ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
61, 5eqtrid 2777 . 2 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
7 iunid 5027 . 2 𝑥𝐴 {𝑥} = 𝐴
86, 7eqtrdi 2781 1 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  c0 4299  {csn 4592   ciun 4958   × cxp 5639  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-iun 4960  df-br 5111  df-opab 5173  df-xp 5647  df-dm 5651
This theorem is referenced by:  gsumwrd2dccat  33014
  Copyright terms: Public domain W3C validator