![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmdju | Structured version Visualization version GIF version |
Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
Ref | Expression |
---|---|
dmdju.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) |
Ref | Expression |
---|---|
dmdju | ⊢ (𝜑 → dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmiun 5926 | . . 3 ⊢ dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 dom ({𝑥} × 𝐵) | |
2 | dmdju.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) | |
3 | dmxp 5941 | . . . . 5 ⊢ (𝐵 ≠ ∅ → dom ({𝑥} × 𝐵) = {𝑥}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom ({𝑥} × 𝐵) = {𝑥}) |
5 | 4 | iuneq2dv 5020 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 dom ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑥}) |
6 | 1, 5 | eqtrid 2786 | . 2 ⊢ (𝜑 → dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑥}) |
7 | iunid 5064 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
8 | 6, 7 | eqtrdi 2790 | 1 ⊢ (𝜑 → dom ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∅c0 4338 {csn 4630 ∪ ciun 4995 × cxp 5686 dom cdm 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-11 2154 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-iun 4997 df-br 5148 df-opab 5210 df-xp 5694 df-dm 5698 |
This theorem is referenced by: gsumwrd2dccat 33052 |
Copyright terms: Public domain | W3C validator |