Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmdju Structured version   Visualization version   GIF version

Theorem dmdju 32624
Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypothesis
Ref Expression
dmdju.1 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
dmdju (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dmdju
StepHypRef Expression
1 dmiun 5853 . . 3 dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 dom ({𝑥} × 𝐵)
2 dmdju.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
3 dmxp 5869 . . . . 5 (𝐵 ≠ ∅ → dom ({𝑥} × 𝐵) = {𝑥})
42, 3syl 17 . . . 4 ((𝜑𝑥𝐴) → dom ({𝑥} × 𝐵) = {𝑥})
54iuneq2dv 4966 . . 3 (𝜑 𝑥𝐴 dom ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
61, 5eqtrid 2778 . 2 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
7 iunid 5009 . 2 𝑥𝐴 {𝑥} = 𝐴
86, 7eqtrdi 2782 1 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  c0 4283  {csn 4576   ciun 4941   × cxp 5614  dom cdm 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-iun 4943  df-br 5092  df-opab 5154  df-xp 5622  df-dm 5626
This theorem is referenced by:  gsumwrd2dccat  33042
  Copyright terms: Public domain W3C validator