Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmdju Structured version   Visualization version   GIF version

Theorem dmdju 32604
Description: Domain of a disjoint union of non-empty sets. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypothesis
Ref Expression
dmdju.1 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
Assertion
Ref Expression
dmdju (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem dmdju
StepHypRef Expression
1 dmiun 5860 . . 3 dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 dom ({𝑥} × 𝐵)
2 dmdju.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
3 dmxp 5875 . . . . 5 (𝐵 ≠ ∅ → dom ({𝑥} × 𝐵) = {𝑥})
42, 3syl 17 . . . 4 ((𝜑𝑥𝐴) → dom ({𝑥} × 𝐵) = {𝑥})
54iuneq2dv 4969 . . 3 (𝜑 𝑥𝐴 dom ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
61, 5eqtrid 2776 . 2 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝑥𝐴 {𝑥})
7 iunid 5012 . 2 𝑥𝐴 {𝑥} = 𝐴
86, 7eqtrdi 2780 1 (𝜑 → dom 𝑥𝐴 ({𝑥} × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4286  {csn 4579   ciun 4944   × cxp 5621  dom cdm 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-iun 4946  df-br 5096  df-opab 5158  df-xp 5629  df-dm 5633
This theorem is referenced by:  gsumwrd2dccat  33033
  Copyright terms: Public domain W3C validator