| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxp | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 12-Aug-2025.) |
| Ref | Expression |
|---|---|
| dmxp | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm 5840 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦 𝑥(𝐴 × 𝐵)𝑦) |
| 3 | brxp 5665 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 4 | 3 | exbii 1849 | . . . 4 ⊢ (∃𝑦 𝑥(𝐴 × 𝐵)𝑦 ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 5 | 19.42v 1954 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | |
| 6 | 2, 4, 5 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
| 7 | n0 4303 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
| 8 | 7 | biimpi 216 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑦 𝑦 ∈ 𝐵) |
| 9 | 8 | biantrud 531 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵))) |
| 10 | 6, 9 | bitr4id 290 | . 2 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ dom (𝐴 × 𝐵) ↔ 𝑥 ∈ 𝐴)) |
| 11 | 10 | eqrdv 2729 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 class class class wbr 5091 × cxp 5614 dom cdm 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-dm 5626 |
| This theorem is referenced by: dmxpid 5870 rnxp 6117 dmxpss 6118 ssxpb 6121 relrelss 6220 unixp 6229 xpexr2 7849 xpexcnv 7850 frxp 8056 mpocurryd 8199 fodomr 9041 fodomfir 9212 nqerf 10818 dmtrclfv 14922 pwsbas 17388 pwsle 17393 imasaddfnlem 17429 imasvscafn 17438 efgrcl 19625 frlmip 21713 txindislem 23546 metustexhalf 24469 rrxip 25315 dveq0 25930 dv11cn 25931 noxp1o 27600 noextendseq 27604 bdayfo 27614 noetasuplem2 27671 noetasuplem4 27673 noetainflem2 27675 noetainflem4 27677 dmdju 32624 fxpgaval 33131 mbfmcst 34267 eulerpartlemt 34379 0rrv 34459 curf 37637 curunc 37641 ismgmOLD 37889 diophrw 42791 onnog 43461 onnobdayg 43462 bdaybndbday 43464 dmrnxp 48867 |
| Copyright terms: Public domain | W3C validator |