![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxp | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmxp | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5683 | . . 3 ⊢ (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | 1 | dmeqi 5905 | . 2 ⊢ dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
3 | n0 4347 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
4 | 3 | biimpi 215 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐵) |
5 | 4 | ralrimivw 3151 | . . 3 ⊢ (𝐵 ≠ ∅ → ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵) |
6 | dmopab3 5920 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ (𝐵 ≠ ∅ → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) |
8 | 2, 7 | eqtrid 2785 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∅c0 4323 {copab 5211 × cxp 5675 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-dm 5687 |
This theorem is referenced by: dmxpid 5930 rnxp 6170 dmxpss 6171 ssxpb 6174 relrelss 6273 unixp 6282 xpexr2 7910 xpexcnv 7911 frxp 8112 mpocurryd 8254 fodomr 9128 nqerf 10925 dmtrclfv 14965 pwsbas 17433 pwsle 17438 imasaddfnlem 17474 imasvscafn 17483 efgrcl 19583 frlmip 21333 txindislem 23137 metustexhalf 24065 rrxip 24907 dveq0 25517 dv11cn 25518 noxp1o 27166 noextendseq 27170 bdayfo 27180 noetasuplem2 27237 noetasuplem4 27239 noetainflem2 27241 noetainflem4 27243 mbfmcst 33258 eulerpartlemt 33370 0rrv 33450 curf 36466 curunc 36470 ismgmOLD 36718 diophrw 41497 onnog 42180 onnobdayg 42181 bdaybndbday 42183 |
Copyright terms: Public domain | W3C validator |