![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxp | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 12-Aug-2025.) |
Ref | Expression |
---|---|
dmxp | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm 5925 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦 𝑥(𝐴 × 𝐵)𝑦) |
3 | brxp 5749 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
4 | 3 | exbii 1846 | . . . 4 ⊢ (∃𝑦 𝑥(𝐴 × 𝐵)𝑦 ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
5 | 19.42v 1953 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | |
6 | 2, 4, 5 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
7 | n0 4376 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
8 | 7 | biimpi 216 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑦 𝑦 ∈ 𝐵) |
9 | 8 | biantrud 531 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵))) |
10 | 6, 9 | bitr4id 290 | . 2 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ dom (𝐴 × 𝐵) ↔ 𝑥 ∈ 𝐴)) |
11 | 10 | eqrdv 2738 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 class class class wbr 5166 × cxp 5698 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 |
This theorem is referenced by: dmxpid 5955 rnxp 6201 dmxpss 6202 ssxpb 6205 relrelss 6304 unixp 6313 xpexr2 7959 xpexcnv 7960 frxp 8167 mpocurryd 8310 fodomr 9194 fodomfir 9396 nqerf 10999 dmtrclfv 15067 pwsbas 17547 pwsle 17552 imasaddfnlem 17588 imasvscafn 17597 efgrcl 19757 frlmip 21821 txindislem 23662 metustexhalf 24590 rrxip 25443 dveq0 26059 dv11cn 26060 noxp1o 27726 noextendseq 27730 bdayfo 27740 noetasuplem2 27797 noetasuplem4 27799 noetainflem2 27801 noetainflem4 27803 mbfmcst 34224 eulerpartlemt 34336 0rrv 34416 curf 37558 curunc 37562 ismgmOLD 37810 diophrw 42715 onnog 43391 onnobdayg 43392 bdaybndbday 43394 |
Copyright terms: Public domain | W3C validator |