![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxp | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmxp | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5681 | . . 3 ⊢ (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | 1 | dmeqi 5902 | . 2 ⊢ dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
3 | n0 4345 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
4 | 3 | biimpi 215 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐵) |
5 | 4 | ralrimivw 3150 | . . 3 ⊢ (𝐵 ≠ ∅ → ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵) |
6 | dmopab3 5917 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ (𝐵 ≠ ∅ → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) |
8 | 2, 7 | eqtrid 2784 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∅c0 4321 {copab 5209 × cxp 5673 dom cdm 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-dm 5685 |
This theorem is referenced by: dmxpid 5927 rnxp 6166 dmxpss 6167 ssxpb 6170 relrelss 6269 unixp 6278 xpexr2 7906 xpexcnv 7907 frxp 8108 mpocurryd 8250 fodomr 9124 nqerf 10921 dmtrclfv 14961 pwsbas 17429 pwsle 17434 imasaddfnlem 17470 imasvscafn 17479 efgrcl 19577 frlmip 21324 txindislem 23128 metustexhalf 24056 rrxip 24898 dveq0 25508 dv11cn 25509 noxp1o 27155 noextendseq 27159 bdayfo 27169 noetasuplem2 27226 noetasuplem4 27228 noetainflem2 27230 noetainflem4 27232 mbfmcst 33246 eulerpartlemt 33358 0rrv 33438 curf 36454 curunc 36458 ismgmOLD 36706 diophrw 41482 onnog 42165 onnobdayg 42166 bdaybndbday 42168 |
Copyright terms: Public domain | W3C validator |