| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxp | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 12-Aug-2025.) |
| Ref | Expression |
|---|---|
| dmxp | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm 5864 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦 𝑥(𝐴 × 𝐵)𝑦) |
| 3 | brxp 5687 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 4 | 3 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑥(𝐴 × 𝐵)𝑦 ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 5 | 19.42v 1953 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | |
| 6 | 2, 4, 5 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
| 7 | n0 4316 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
| 8 | 7 | biimpi 216 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑦 𝑦 ∈ 𝐵) |
| 9 | 8 | biantrud 531 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵))) |
| 10 | 6, 9 | bitr4id 290 | . 2 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ dom (𝐴 × 𝐵) ↔ 𝑥 ∈ 𝐴)) |
| 11 | 10 | eqrdv 2727 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 class class class wbr 5107 × cxp 5636 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 |
| This theorem is referenced by: dmxpid 5894 rnxp 6143 dmxpss 6144 ssxpb 6147 relrelss 6246 unixp 6255 xpexr2 7895 xpexcnv 7896 frxp 8105 mpocurryd 8248 fodomr 9092 fodomfir 9279 nqerf 10883 dmtrclfv 14984 pwsbas 17450 pwsle 17455 imasaddfnlem 17491 imasvscafn 17500 efgrcl 19645 frlmip 21687 txindislem 23520 metustexhalf 24444 rrxip 25290 dveq0 25905 dv11cn 25906 noxp1o 27575 noextendseq 27579 bdayfo 27589 noetasuplem2 27646 noetasuplem4 27648 noetainflem2 27650 noetainflem4 27652 dmdju 32571 fxpgaval 33124 mbfmcst 34250 eulerpartlemt 34362 0rrv 34442 curf 37592 curunc 37596 ismgmOLD 37844 diophrw 42747 onnog 43418 onnobdayg 43419 bdaybndbday 43421 dmrnxp 48825 |
| Copyright terms: Public domain | W3C validator |