![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxp | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmxp | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xp 5454 | . . 3 ⊢ (𝐴 × 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | 1 | dmeqi 5664 | . 2 ⊢ dom (𝐴 × 𝐵) = dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
3 | n0 4234 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐵) | |
4 | 3 | biimpi 217 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐵) |
5 | 4 | ralrimivw 3150 | . . 3 ⊢ (𝐵 ≠ ∅ → ∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵) |
6 | dmopab3 5679 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 𝑥 ∈ 𝐵 ↔ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) | |
7 | 5, 6 | sylib 219 | . 2 ⊢ (𝐵 ≠ ∅ → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = 𝐴) |
8 | 2, 7 | syl5eq 2843 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∃wex 1761 ∈ wcel 2081 ≠ wne 2984 ∀wral 3105 ∅c0 4215 {copab 5028 × cxp 5446 dom cdm 5448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rab 3114 df-v 3439 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-br 4967 df-opab 5029 df-xp 5454 df-dm 5458 |
This theorem is referenced by: dmxpid 5687 rnxp 5908 dmxpss 5909 ssxpb 5912 relrelss 6004 unixp 6013 xpexr2 7485 xpexcnv 7486 frxp 7678 mpocurryd 7791 fodomr 8520 nqerf 10203 dmtrclfv 14217 pwsbas 16594 pwsle 16599 imasaddfnlem 16635 imasvscafn 16644 efgrcl 18573 frlmip 20609 txindislem 21930 metustexhalf 22854 rrxip 23681 dveq0 24285 dv11cn 24286 mbfmcst 31139 eulerpartlemt 31251 0rrv 31331 noxp1o 32786 noextendseq 32790 bdayfo 32798 noetalem3 32835 noetalem4 32836 curf 34427 curunc 34431 ismgmOLD 34686 diophrw 38867 |
Copyright terms: Public domain | W3C validator |