MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxp Structured version   Visualization version   GIF version

Theorem dmxp 5913
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 12-Aug-2025.)
Assertion
Ref Expression
dmxp (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)

Proof of Theorem dmxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . . 5 𝑥 ∈ V
21eldm 5885 . . . 4 (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦 𝑥(𝐴 × 𝐵)𝑦)
3 brxp 5708 . . . . 5 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
43exbii 1848 . . . 4 (∃𝑦 𝑥(𝐴 × 𝐵)𝑦 ↔ ∃𝑦(𝑥𝐴𝑦𝐵))
5 19.42v 1953 . . . 4 (∃𝑦(𝑥𝐴𝑦𝐵) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
62, 4, 53bitri 297 . . 3 (𝑥 ∈ dom (𝐴 × 𝐵) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
7 n0 4333 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
87biimpi 216 . . . 4 (𝐵 ≠ ∅ → ∃𝑦 𝑦𝐵)
98biantrud 531 . . 3 (𝐵 ≠ ∅ → (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦𝐵)))
106, 9bitr4id 290 . 2 (𝐵 ≠ ∅ → (𝑥 ∈ dom (𝐴 × 𝐵) ↔ 𝑥𝐴))
1110eqrdv 2734 1 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  c0 4313   class class class wbr 5124   × cxp 5657  dom cdm 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-dm 5669
This theorem is referenced by:  dmxpid  5915  rnxp  6164  dmxpss  6165  ssxpb  6168  relrelss  6267  unixp  6276  xpexr2  7920  xpexcnv  7921  frxp  8130  mpocurryd  8273  fodomr  9147  fodomfir  9345  nqerf  10949  dmtrclfv  15042  pwsbas  17506  pwsle  17511  imasaddfnlem  17547  imasvscafn  17556  efgrcl  19701  frlmip  21743  txindislem  23576  metustexhalf  24500  rrxip  25347  dveq0  25962  dv11cn  25963  noxp1o  27632  noextendseq  27636  bdayfo  27646  noetasuplem2  27703  noetasuplem4  27705  noetainflem2  27707  noetainflem4  27709  dmdju  32630  mbfmcst  34296  eulerpartlemt  34408  0rrv  34488  curf  37627  curunc  37631  ismgmOLD  37879  diophrw  42749  onnog  43420  onnobdayg  43421  bdaybndbday  43423  dmrnxp  48782
  Copyright terms: Public domain W3C validator