| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxp | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 12-Aug-2025.) |
| Ref | Expression |
|---|---|
| dmxp | ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm 5867 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦 𝑥(𝐴 × 𝐵)𝑦) |
| 3 | brxp 5690 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 4 | 3 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑥(𝐴 × 𝐵)𝑦 ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 5 | 19.42v 1953 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) | |
| 6 | 2, 4, 5 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵)) |
| 7 | n0 4319 | . . . . 5 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
| 8 | 7 | biimpi 216 | . . . 4 ⊢ (𝐵 ≠ ∅ → ∃𝑦 𝑦 ∈ 𝐵) |
| 9 | 8 | biantrud 531 | . . 3 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐵))) |
| 10 | 6, 9 | bitr4id 290 | . 2 ⊢ (𝐵 ≠ ∅ → (𝑥 ∈ dom (𝐴 × 𝐵) ↔ 𝑥 ∈ 𝐴)) |
| 11 | 10 | eqrdv 2728 | 1 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 × cxp 5639 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 |
| This theorem is referenced by: dmxpid 5897 rnxp 6146 dmxpss 6147 ssxpb 6150 relrelss 6249 unixp 6258 xpexr2 7898 xpexcnv 7899 frxp 8108 mpocurryd 8251 fodomr 9098 fodomfir 9286 nqerf 10890 dmtrclfv 14991 pwsbas 17457 pwsle 17462 imasaddfnlem 17498 imasvscafn 17507 efgrcl 19652 frlmip 21694 txindislem 23527 metustexhalf 24451 rrxip 25297 dveq0 25912 dv11cn 25913 noxp1o 27582 noextendseq 27586 bdayfo 27596 noetasuplem2 27653 noetasuplem4 27655 noetainflem2 27657 noetainflem4 27659 dmdju 32578 fxpgaval 33131 mbfmcst 34257 eulerpartlemt 34369 0rrv 34449 curf 37599 curunc 37603 ismgmOLD 37851 diophrw 42754 onnog 43425 onnobdayg 43426 bdaybndbday 43428 dmrnxp 48829 |
| Copyright terms: Public domain | W3C validator |