MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxp Structured version   Visualization version   GIF version

Theorem dmxp 5892
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 12-Aug-2025.)
Assertion
Ref Expression
dmxp (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)

Proof of Theorem dmxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . 5 𝑥 ∈ V
21eldm 5864 . . . 4 (𝑥 ∈ dom (𝐴 × 𝐵) ↔ ∃𝑦 𝑥(𝐴 × 𝐵)𝑦)
3 brxp 5687 . . . . 5 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
43exbii 1848 . . . 4 (∃𝑦 𝑥(𝐴 × 𝐵)𝑦 ↔ ∃𝑦(𝑥𝐴𝑦𝐵))
5 19.42v 1953 . . . 4 (∃𝑦(𝑥𝐴𝑦𝐵) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
62, 4, 53bitri 297 . . 3 (𝑥 ∈ dom (𝐴 × 𝐵) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
7 n0 4316 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
87biimpi 216 . . . 4 (𝐵 ≠ ∅ → ∃𝑦 𝑦𝐵)
98biantrud 531 . . 3 (𝐵 ≠ ∅ → (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦𝐵)))
106, 9bitr4id 290 . 2 (𝐵 ≠ ∅ → (𝑥 ∈ dom (𝐴 × 𝐵) ↔ 𝑥𝐴))
1110eqrdv 2727 1 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  c0 4296   class class class wbr 5107   × cxp 5636  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648
This theorem is referenced by:  dmxpid  5894  rnxp  6143  dmxpss  6144  ssxpb  6147  relrelss  6246  unixp  6255  xpexr2  7895  xpexcnv  7896  frxp  8105  mpocurryd  8248  fodomr  9092  fodomfir  9279  nqerf  10883  dmtrclfv  14984  pwsbas  17450  pwsle  17455  imasaddfnlem  17491  imasvscafn  17500  efgrcl  19645  frlmip  21687  txindislem  23520  metustexhalf  24444  rrxip  25290  dveq0  25905  dv11cn  25906  noxp1o  27575  noextendseq  27579  bdayfo  27589  noetasuplem2  27646  noetasuplem4  27648  noetainflem2  27650  noetainflem4  27652  dmdju  32571  fxpgaval  33124  mbfmcst  34250  eulerpartlemt  34362  0rrv  34442  curf  37592  curunc  37596  ismgmOLD  37844  diophrw  42747  onnog  43418  onnobdayg  43419  bdaybndbday  43421  dmrnxp  48825
  Copyright terms: Public domain W3C validator