MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxp Structured version   Visualization version   GIF version

Theorem dmxp 5929
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxp (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)

Proof of Theorem dmxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5683 . . 3 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
21dmeqi 5905 . 2 dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
3 n0 4347 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
43biimpi 215 . . . 4 (𝐵 ≠ ∅ → ∃𝑥 𝑥𝐵)
54ralrimivw 3151 . . 3 (𝐵 ≠ ∅ → ∀𝑦𝐴𝑥 𝑥𝐵)
6 dmopab3 5920 . . 3 (∀𝑦𝐴𝑥 𝑥𝐵 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = 𝐴)
75, 6sylib 217 . 2 (𝐵 ≠ ∅ → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = 𝐴)
82, 7eqtrid 2785 1 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  c0 4323  {copab 5211   × cxp 5675  dom cdm 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-dm 5687
This theorem is referenced by:  dmxpid  5930  rnxp  6170  dmxpss  6171  ssxpb  6174  relrelss  6273  unixp  6282  xpexr2  7910  xpexcnv  7911  frxp  8112  mpocurryd  8254  fodomr  9128  nqerf  10925  dmtrclfv  14965  pwsbas  17433  pwsle  17438  imasaddfnlem  17474  imasvscafn  17483  efgrcl  19583  frlmip  21333  txindislem  23137  metustexhalf  24065  rrxip  24907  dveq0  25517  dv11cn  25518  noxp1o  27166  noextendseq  27170  bdayfo  27180  noetasuplem2  27237  noetasuplem4  27239  noetainflem2  27241  noetainflem4  27243  mbfmcst  33258  eulerpartlemt  33370  0rrv  33450  curf  36466  curunc  36470  ismgmOLD  36718  diophrw  41497  onnog  42180  onnobdayg  42181  bdaybndbday  42183
  Copyright terms: Public domain W3C validator