MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxp Structured version   Visualization version   GIF version

Theorem dmxp 5838
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxp (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)

Proof of Theorem dmxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 5595 . . 3 (𝐴 × 𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
21dmeqi 5813 . 2 dom (𝐴 × 𝐵) = dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)}
3 n0 4280 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
43biimpi 215 . . . 4 (𝐵 ≠ ∅ → ∃𝑥 𝑥𝐵)
54ralrimivw 3104 . . 3 (𝐵 ≠ ∅ → ∀𝑦𝐴𝑥 𝑥𝐵)
6 dmopab3 5828 . . 3 (∀𝑦𝐴𝑥 𝑥𝐵 ↔ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = 𝐴)
75, 6sylib 217 . 2 (𝐵 ≠ ∅ → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝑥𝐵)} = 𝐴)
82, 7eqtrid 2790 1 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  c0 4256  {copab 5136   × cxp 5587  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-dm 5599
This theorem is referenced by:  dmxpid  5839  rnxp  6073  dmxpss  6074  ssxpb  6077  relrelss  6176  unixp  6185  xpexr2  7766  xpexcnv  7767  frxp  7967  mpocurryd  8085  fodomr  8915  nqerf  10686  dmtrclfv  14729  pwsbas  17198  pwsle  17203  imasaddfnlem  17239  imasvscafn  17248  efgrcl  19321  frlmip  20985  txindislem  22784  metustexhalf  23712  rrxip  24554  dveq0  25164  dv11cn  25165  mbfmcst  32226  eulerpartlemt  32338  0rrv  32418  noxp1o  33866  noextendseq  33870  bdayfo  33880  noetasuplem2  33937  noetasuplem4  33939  noetainflem2  33941  noetainflem4  33943  curf  35755  curunc  35759  ismgmOLD  36008  diophrw  40581
  Copyright terms: Public domain W3C validator