Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumwrd2dccat Structured version   Visualization version   GIF version

Theorem gsumwrd2dccat 33007
Description: Rewrite a sum ranging over pairs of words as a sum of sums over concatenated subwords. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsumwrd2dccat.1 𝐵 = (Base‘𝑀)
gsumwrd2dccat.2 𝑍 = (0g𝑀)
gsumwrd2dccat.3 (𝜑𝐹:(Word 𝐴 × Word 𝐴)⟶𝐵)
gsumwrd2dccat.4 (𝜑𝐹 finSupp 𝑍)
gsumwrd2dccat.5 (𝜑𝑀 ∈ CMnd)
gsumwrd2dccat.6 (𝜑𝐴𝐵)
Assertion
Ref Expression
gsumwrd2dccat (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
Distinct variable groups:   𝑤,𝐴,𝑗   𝐵,𝑗,𝑤   𝑗,𝐹,𝑤   𝑗,𝑀,𝑤   𝑗,𝑍,𝑤   𝜑,𝑗,𝑤

Proof of Theorem gsumwrd2dccat
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwrd2dccat.1 . . . 4 𝐵 = (Base‘𝑀)
2 gsumwrd2dccat.2 . . . 4 𝑍 = (0g𝑀)
3 gsumwrd2dccat.5 . . . 4 (𝜑𝑀 ∈ CMnd)
41fvexi 6889 . . . . . . . 8 𝐵 ∈ V
54a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
6 gsumwrd2dccat.6 . . . . . . 7 (𝜑𝐴𝐵)
75, 6ssexd 5294 . . . . . 6 (𝜑𝐴 ∈ V)
8 wrdexg 14540 . . . . . 6 (𝐴 ∈ V → Word 𝐴 ∈ V)
97, 8syl 17 . . . . 5 (𝜑 → Word 𝐴 ∈ V)
109, 9xpexd 7743 . . . 4 (𝜑 → (Word 𝐴 × Word 𝐴) ∈ V)
11 gsumwrd2dccat.3 . . . 4 (𝜑𝐹:(Word 𝐴 × Word 𝐴)⟶𝐵)
12 gsumwrd2dccat.4 . . . 4 (𝜑𝐹 finSupp 𝑍)
13 eqid 2735 . . . . . . . 8 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))
14 eqid 2735 . . . . . . . 8 (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩) = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩)
15 eqid 2735 . . . . . . . 8 (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)
1613, 14, 15, 7gsumwrd2dccatlem 33006 . . . . . . 7 (𝜑 → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩):(Word 𝐴 × Word 𝐴)–1-1-onto 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ∧ (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩) = (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)))
1716simpld 494 . . . . . 6 (𝜑 → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩):(Word 𝐴 × Word 𝐴)–1-1-onto 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
18 f1ocnv 6829 . . . . . 6 ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩):(Word 𝐴 × Word 𝐴)–1-1-onto 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴))
1917, 18syl 17 . . . . 5 (𝜑(𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴))
2016simprd 495 . . . . . 6 (𝜑(𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩) = (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
2120f1oeq1d 6812 . . . . 5 (𝜑 → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴) ↔ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴)))
2219, 21mpbid 232 . . . 4 (𝜑 → (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴))
231, 2, 3, 10, 11, 12, 22gsumf1o 19895 . . 3 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ∘ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))))
24 relxp 5672 . . . . . . . . . . . 12 Rel ({𝑥} × (0...(♯‘𝑥)))
2524a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ Word 𝐴) → Rel ({𝑥} × (0...(♯‘𝑥))))
2625ralrimiva 3132 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ Word 𝐴Rel ({𝑥} × (0...(♯‘𝑥))))
27 reliun 5795 . . . . . . . . . 10 (Rel 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↔ ∀𝑥 ∈ Word 𝐴Rel ({𝑥} × (0...(♯‘𝑥))))
2826, 27sylibr 234 . . . . . . . . 9 (𝜑 → Rel 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
29 1stdm 8037 . . . . . . . . 9 ((Rel 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∧ 𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (1st𝑏) ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
3028, 29sylan 580 . . . . . . . 8 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (1st𝑏) ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
31 lencl 14549 . . . . . . . . . . . . 13 (𝑥 ∈ Word 𝐴 → (♯‘𝑥) ∈ ℕ0)
3231adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ Word 𝐴) → (♯‘𝑥) ∈ ℕ0)
33 nn0uz 12892 . . . . . . . . . . . 12 0 = (ℤ‘0)
3432, 33eleqtrdi 2844 . . . . . . . . . . 11 ((𝜑𝑥 ∈ Word 𝐴) → (♯‘𝑥) ∈ (ℤ‘0))
35 fzn0 13553 . . . . . . . . . . 11 ((0...(♯‘𝑥)) ≠ ∅ ↔ (♯‘𝑥) ∈ (ℤ‘0))
3634, 35sylibr 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ Word 𝐴) → (0...(♯‘𝑥)) ≠ ∅)
3736dmdju 32571 . . . . . . . . 9 (𝜑 → dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = Word 𝐴)
3837adantr 480 . . . . . . . 8 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = Word 𝐴)
3930, 38eleqtrd 2836 . . . . . . 7 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (1st𝑏) ∈ Word 𝐴)
40 pfxcl 14693 . . . . . . 7 ((1st𝑏) ∈ Word 𝐴 → ((1st𝑏) prefix (2nd𝑏)) ∈ Word 𝐴)
4139, 40syl 17 . . . . . 6 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ((1st𝑏) prefix (2nd𝑏)) ∈ Word 𝐴)
42 swrdcl 14661 . . . . . . 7 ((1st𝑏) ∈ Word 𝐴 → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) ∈ Word 𝐴)
4339, 42syl 17 . . . . . 6 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) ∈ Word 𝐴)
4441, 43opelxpd 5693 . . . . 5 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ∈ (Word 𝐴 × Word 𝐴))
45 sneq 4611 . . . . . . . . 9 (𝑤 = 𝑥 → {𝑤} = {𝑥})
46 fveq2 6875 . . . . . . . . . 10 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
4746oveq2d 7419 . . . . . . . . 9 (𝑤 = 𝑥 → (0...(♯‘𝑤)) = (0...(♯‘𝑥)))
4845, 47xpeq12d 5685 . . . . . . . 8 (𝑤 = 𝑥 → ({𝑤} × (0...(♯‘𝑤))) = ({𝑥} × (0...(♯‘𝑥))))
4948cbviunv 5016 . . . . . . 7 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) = 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))
5049mpteq1i 5211 . . . . . 6 (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)
5150a1i 11 . . . . 5 (𝜑 → (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
5211feqmptd 6946 . . . . 5 (𝜑𝐹 = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (𝐹𝑎)))
53 fveq2 6875 . . . . 5 (𝑎 = ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ → (𝐹𝑎) = (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
5444, 51, 52, 53fmptco 7118 . . . 4 (𝜑 → (𝐹 ∘ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)))
5554oveq2d 7419 . . 3 (𝜑 → (𝑀 Σg (𝐹 ∘ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))) = (𝑀 Σg (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))))
56 nfv 1914 . . . 4 𝑤𝜑
5711, 44cofmpt 7121 . . . . 5 (𝜑 → (𝐹 ∘ (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)))
5820, 51eqtr2d 2771 . . . . . . . . 9 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩))
5949eqcomi 2744 . . . . . . . . . 10 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))
6059a1i 11 . . . . . . . . 9 (𝜑 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
61 eqidd 2736 . . . . . . . . 9 (𝜑 → (Word 𝐴 × Word 𝐴) = (Word 𝐴 × Word 𝐴))
6258, 60, 61f1oeq123d 6811 . . . . . . . 8 (𝜑 → ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1-onto→(Word 𝐴 × Word 𝐴) ↔ (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴)))
6319, 62mpbird 257 . . . . . . 7 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1-onto→(Word 𝐴 × Word 𝐴))
64 f1of1 6816 . . . . . . 7 ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1-onto→(Word 𝐴 × Word 𝐴) → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1→(Word 𝐴 × Word 𝐴))
6563, 64syl 17 . . . . . 6 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1→(Word 𝐴 × Word 𝐴))
662fvexi 6889 . . . . . . 7 𝑍 ∈ V
6766a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
6811, 10fexd 7218 . . . . . 6 (𝜑𝐹 ∈ V)
6912, 65, 67, 68fsuppco 9412 . . . . 5 (𝜑 → (𝐹 ∘ (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) finSupp 𝑍)
7057, 69eqbrtrrd 5143 . . . 4 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) finSupp 𝑍)
7111adantr 480 . . . . . 6 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → 𝐹:(Word 𝐴 × Word 𝐴)⟶𝐵)
7271, 44ffvelcdmd 7074 . . . . 5 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) ∈ 𝐵)
7372fmpttd 7104 . . . 4 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))⟶𝐵)
74 vsnex 5404 . . . . . . . 8 {𝑥} ∈ V
75 ovex 7436 . . . . . . . 8 (0...(♯‘𝑥)) ∈ V
7674, 75xpex 7745 . . . . . . 7 ({𝑥} × (0...(♯‘𝑥))) ∈ V
7776a1i 11 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐴) → ({𝑥} × (0...(♯‘𝑥))) ∈ V)
7877ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V)
79 iunexg 7960 . . . . 5 ((Word 𝐴 ∈ V ∧ ∀𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V) → 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V)
809, 78, 79syl2anc 584 . . . 4 (𝜑 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V)
8156, 1, 2, 28, 70, 3, 73, 80gsumfs2d 32995 . . 3 (𝜑 → (𝑀 Σg (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))) = (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))))))
8223, 55, 813eqtrd 2774 . 2 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))))))
83 eqid 2735 . . . . . . 7 (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
84 vex 3463 . . . . . . . . . . 11 𝑤 ∈ V
85 vex 3463 . . . . . . . . . . 11 𝑗 ∈ V
8684, 85op1std 7996 . . . . . . . . . 10 (𝑏 = ⟨𝑤, 𝑗⟩ → (1st𝑏) = 𝑤)
8784, 85op2ndd 7997 . . . . . . . . . 10 (𝑏 = ⟨𝑤, 𝑗⟩ → (2nd𝑏) = 𝑗)
8886, 87oveq12d 7421 . . . . . . . . 9 (𝑏 = ⟨𝑤, 𝑗⟩ → ((1st𝑏) prefix (2nd𝑏)) = (𝑤 prefix 𝑗))
8986fveq2d 6879 . . . . . . . . . . 11 (𝑏 = ⟨𝑤, 𝑗⟩ → (♯‘(1st𝑏)) = (♯‘𝑤))
9087, 89opeq12d 4857 . . . . . . . . . 10 (𝑏 = ⟨𝑤, 𝑗⟩ → ⟨(2nd𝑏), (♯‘(1st𝑏))⟩ = ⟨𝑗, (♯‘𝑤)⟩)
9186, 90oveq12d 7421 . . . . . . . . 9 (𝑏 = ⟨𝑤, 𝑗⟩ → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))
9288, 91opeq12d 4857 . . . . . . . 8 (𝑏 = ⟨𝑤, 𝑗⟩ → ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ = ⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)
9392fveq2d 6879 . . . . . . 7 (𝑏 = ⟨𝑤, 𝑗⟩ → (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))
9437eleq2d 2820 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↔ 𝑤 ∈ Word 𝐴))
9594biimpa 476 . . . . . . . . 9 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → 𝑤 ∈ Word 𝐴)
9695adantr 480 . . . . . . . 8 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → 𝑤 ∈ Word 𝐴)
97 ovexd 7438 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ Word 𝐴) → (0...(♯‘𝑥)) ∈ V)
98 nfcv 2898 . . . . . . . . . . . 12 𝑥(0...(♯‘𝑤))
99 fveq2 6875 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (♯‘𝑥) = (♯‘𝑤))
10099oveq2d 7419 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (0...(♯‘𝑥)) = (0...(♯‘𝑤)))
1019, 97, 98, 100iunsnima2 32545 . . . . . . . . . . 11 ((𝜑𝑤 ∈ Word 𝐴) → ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) = (0...(♯‘𝑤)))
10295, 101syldan 591 . . . . . . . . . 10 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) = (0...(♯‘𝑤)))
103102eleq2d 2820 . . . . . . . . 9 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↔ 𝑗 ∈ (0...(♯‘𝑤))))
104103biimpa 476 . . . . . . . 8 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → 𝑗 ∈ (0...(♯‘𝑤)))
105100opeliunxp2 5818 . . . . . . . 8 (⟨𝑤, 𝑗⟩ ∈ 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↔ (𝑤 ∈ Word 𝐴𝑗 ∈ (0...(♯‘𝑤))))
10696, 104, 105sylanbrc 583 . . . . . . 7 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → ⟨𝑤, 𝑗⟩ ∈ 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
107 fvexd 6890 . . . . . . 7 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩) ∈ V)
10883, 93, 106, 107fvmptd3 7008 . . . . . 6 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩) = (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))
109108mpteq2dva 5214 . . . . 5 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩)) = (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))
110109oveq2d 7419 . . . 4 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))) = (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))
111110mpteq2dva 5214 . . 3 (𝜑 → (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩)))) = (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))))
112111oveq2d 7419 . 2 (𝜑 → (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))))) = (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
113102mpteq1d 5210 . . . . 5 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)) = (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))
114113oveq2d 7419 . . . 4 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))) = (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))
11537, 114mpteq12dva 5206 . . 3 (𝜑 → (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))) = (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))))
116115oveq2d 7419 . 2 (𝜑 → (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))) = (𝑀 Σg (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
11782, 112, 1163eqtrd 2774 1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  wss 3926  c0 4308  {csn 4601  cop 4607   ciun 4967   class class class wbr 5119  cmpt 5201   × cxp 5652  ccnv 5653  dom cdm 5654  cima 5657  ccom 5658  Rel wrel 5659  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985   finSupp cfsupp 9371  0cc0 11127  0cn0 12499  cuz 12850  ...cfz 13522  chash 14346  Word cword 14529   ++ cconcat 14586   substr csubstr 14656   prefix cpfx 14686  Basecbs 17226  0gc0g 17451   Σg cgsu 17452  CMndccmn 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-word 14530  df-concat 14587  df-substr 14657  df-pfx 14687  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-0g 17453  df-gsum 17454  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761
This theorem is referenced by:  elrgspnlem2  33184
  Copyright terms: Public domain W3C validator