Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumwrd2dccat Structured version   Visualization version   GIF version

Theorem gsumwrd2dccat 33047
Description: Rewrite a sum ranging over pairs of words as a sum of sums over concatenated subwords. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsumwrd2dccat.1 𝐵 = (Base‘𝑀)
gsumwrd2dccat.2 𝑍 = (0g𝑀)
gsumwrd2dccat.3 (𝜑𝐹:(Word 𝐴 × Word 𝐴)⟶𝐵)
gsumwrd2dccat.4 (𝜑𝐹 finSupp 𝑍)
gsumwrd2dccat.5 (𝜑𝑀 ∈ CMnd)
gsumwrd2dccat.6 (𝜑𝐴𝐵)
Assertion
Ref Expression
gsumwrd2dccat (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
Distinct variable groups:   𝑤,𝐴,𝑗   𝐵,𝑗,𝑤   𝑗,𝐹,𝑤   𝑗,𝑀,𝑤   𝑗,𝑍,𝑤   𝜑,𝑗,𝑤

Proof of Theorem gsumwrd2dccat
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwrd2dccat.1 . . . 4 𝐵 = (Base‘𝑀)
2 gsumwrd2dccat.2 . . . 4 𝑍 = (0g𝑀)
3 gsumwrd2dccat.5 . . . 4 (𝜑𝑀 ∈ CMnd)
41fvexi 6836 . . . . . . . 8 𝐵 ∈ V
54a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
6 gsumwrd2dccat.6 . . . . . . 7 (𝜑𝐴𝐵)
75, 6ssexd 5260 . . . . . 6 (𝜑𝐴 ∈ V)
8 wrdexg 14431 . . . . . 6 (𝐴 ∈ V → Word 𝐴 ∈ V)
97, 8syl 17 . . . . 5 (𝜑 → Word 𝐴 ∈ V)
109, 9xpexd 7684 . . . 4 (𝜑 → (Word 𝐴 × Word 𝐴) ∈ V)
11 gsumwrd2dccat.3 . . . 4 (𝜑𝐹:(Word 𝐴 × Word 𝐴)⟶𝐵)
12 gsumwrd2dccat.4 . . . 4 (𝜑𝐹 finSupp 𝑍)
13 eqid 2731 . . . . . . . 8 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))
14 eqid 2731 . . . . . . . 8 (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩) = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩)
15 eqid 2731 . . . . . . . 8 (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)
1613, 14, 15, 7gsumwrd2dccatlem 33046 . . . . . . 7 (𝜑 → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩):(Word 𝐴 × Word 𝐴)–1-1-onto 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ∧ (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩) = (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)))
1716simpld 494 . . . . . 6 (𝜑 → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩):(Word 𝐴 × Word 𝐴)–1-1-onto 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
18 f1ocnv 6775 . . . . . 6 ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩):(Word 𝐴 × Word 𝐴)–1-1-onto 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴))
1917, 18syl 17 . . . . 5 (𝜑(𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴))
2016simprd 495 . . . . . 6 (𝜑(𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩) = (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
2120f1oeq1d 6758 . . . . 5 (𝜑 → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴) ↔ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴)))
2219, 21mpbid 232 . . . 4 (𝜑 → (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴))
231, 2, 3, 10, 11, 12, 22gsumf1o 19828 . . 3 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝐹 ∘ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))))
24 relxp 5632 . . . . . . . . . . . 12 Rel ({𝑥} × (0...(♯‘𝑥)))
2524a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ Word 𝐴) → Rel ({𝑥} × (0...(♯‘𝑥))))
2625ralrimiva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ Word 𝐴Rel ({𝑥} × (0...(♯‘𝑥))))
27 reliun 5755 . . . . . . . . . 10 (Rel 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↔ ∀𝑥 ∈ Word 𝐴Rel ({𝑥} × (0...(♯‘𝑥))))
2826, 27sylibr 234 . . . . . . . . 9 (𝜑 → Rel 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
29 1stdm 7972 . . . . . . . . 9 ((Rel 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∧ 𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (1st𝑏) ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
3028, 29sylan 580 . . . . . . . 8 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (1st𝑏) ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
31 lencl 14440 . . . . . . . . . . . . 13 (𝑥 ∈ Word 𝐴 → (♯‘𝑥) ∈ ℕ0)
3231adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ Word 𝐴) → (♯‘𝑥) ∈ ℕ0)
33 nn0uz 12774 . . . . . . . . . . . 12 0 = (ℤ‘0)
3432, 33eleqtrdi 2841 . . . . . . . . . . 11 ((𝜑𝑥 ∈ Word 𝐴) → (♯‘𝑥) ∈ (ℤ‘0))
35 fzn0 13438 . . . . . . . . . . 11 ((0...(♯‘𝑥)) ≠ ∅ ↔ (♯‘𝑥) ∈ (ℤ‘0))
3634, 35sylibr 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ Word 𝐴) → (0...(♯‘𝑥)) ≠ ∅)
3736dmdju 32629 . . . . . . . . 9 (𝜑 → dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = Word 𝐴)
3837adantr 480 . . . . . . . 8 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = Word 𝐴)
3930, 38eleqtrd 2833 . . . . . . 7 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (1st𝑏) ∈ Word 𝐴)
40 pfxcl 14585 . . . . . . 7 ((1st𝑏) ∈ Word 𝐴 → ((1st𝑏) prefix (2nd𝑏)) ∈ Word 𝐴)
4139, 40syl 17 . . . . . 6 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ((1st𝑏) prefix (2nd𝑏)) ∈ Word 𝐴)
42 swrdcl 14553 . . . . . . 7 ((1st𝑏) ∈ Word 𝐴 → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) ∈ Word 𝐴)
4339, 42syl 17 . . . . . 6 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) ∈ Word 𝐴)
4441, 43opelxpd 5653 . . . . 5 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ∈ (Word 𝐴 × Word 𝐴))
45 sneq 4583 . . . . . . . . 9 (𝑤 = 𝑥 → {𝑤} = {𝑥})
46 fveq2 6822 . . . . . . . . . 10 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
4746oveq2d 7362 . . . . . . . . 9 (𝑤 = 𝑥 → (0...(♯‘𝑤)) = (0...(♯‘𝑥)))
4845, 47xpeq12d 5645 . . . . . . . 8 (𝑤 = 𝑥 → ({𝑤} × (0...(♯‘𝑤))) = ({𝑥} × (0...(♯‘𝑥))))
4948cbviunv 4987 . . . . . . 7 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) = 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))
5049mpteq1i 5180 . . . . . 6 (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)
5150a1i 11 . . . . 5 (𝜑 → (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
5211feqmptd 6890 . . . . 5 (𝜑𝐹 = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (𝐹𝑎)))
53 fveq2 6822 . . . . 5 (𝑎 = ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ → (𝐹𝑎) = (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
5444, 51, 52, 53fmptco 7062 . . . 4 (𝜑 → (𝐹 ∘ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)))
5554oveq2d 7362 . . 3 (𝜑 → (𝑀 Σg (𝐹 ∘ (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))) = (𝑀 Σg (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))))
56 nfv 1915 . . . 4 𝑤𝜑
5711, 44cofmpt 7065 . . . . 5 (𝜑 → (𝐹 ∘ (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)))
5820, 51eqtr2d 2767 . . . . . . . . 9 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩))
5949eqcomi 2740 . . . . . . . . . 10 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))
6059a1i 11 . . . . . . . . 9 (𝜑 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
61 eqidd 2732 . . . . . . . . 9 (𝜑 → (Word 𝐴 × Word 𝐴) = (Word 𝐴 × Word 𝐴))
6258, 60, 61f1oeq123d 6757 . . . . . . . 8 (𝜑 → ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1-onto→(Word 𝐴 × Word 𝐴) ↔ (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩): 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))–1-1-onto→(Word 𝐴 × Word 𝐴)))
6319, 62mpbird 257 . . . . . . 7 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1-onto→(Word 𝐴 × Word 𝐴))
64 f1of1 6762 . . . . . . 7 ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1-onto→(Word 𝐴 × Word 𝐴) → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1→(Word 𝐴 × Word 𝐴))
6563, 64syl 17 . . . . . 6 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))–1-1→(Word 𝐴 × Word 𝐴))
662fvexi 6836 . . . . . . 7 𝑍 ∈ V
6766a1i 11 . . . . . 6 (𝜑𝑍 ∈ V)
6811, 10fexd 7161 . . . . . 6 (𝜑𝐹 ∈ V)
6912, 65, 67, 68fsuppco 9286 . . . . 5 (𝜑 → (𝐹 ∘ (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) finSupp 𝑍)
7057, 69eqbrtrrd 5113 . . . 4 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) finSupp 𝑍)
7111adantr 480 . . . . . 6 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → 𝐹:(Word 𝐴 × Word 𝐴)⟶𝐵)
7271, 44ffvelcdmd 7018 . . . . 5 ((𝜑𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) ∈ 𝐵)
7372fmpttd 7048 . . . 4 (𝜑 → (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)): 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))⟶𝐵)
74 vsnex 5370 . . . . . . . 8 {𝑥} ∈ V
75 ovex 7379 . . . . . . . 8 (0...(♯‘𝑥)) ∈ V
7674, 75xpex 7686 . . . . . . 7 ({𝑥} × (0...(♯‘𝑥))) ∈ V
7776a1i 11 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐴) → ({𝑥} × (0...(♯‘𝑥))) ∈ V)
7877ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V)
79 iunexg 7895 . . . . 5 ((Word 𝐴 ∈ V ∧ ∀𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V) → 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V)
809, 78, 79syl2anc 584 . . . 4 (𝜑 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ∈ V)
8156, 1, 2, 28, 70, 3, 73, 80gsumfs2d 33035 . . 3 (𝜑 → (𝑀 Σg (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))) = (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))))))
8223, 55, 813eqtrd 2770 . 2 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))))))
83 eqid 2731 . . . . . . 7 (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)) = (𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
84 vex 3440 . . . . . . . . . . 11 𝑤 ∈ V
85 vex 3440 . . . . . . . . . . 11 𝑗 ∈ V
8684, 85op1std 7931 . . . . . . . . . 10 (𝑏 = ⟨𝑤, 𝑗⟩ → (1st𝑏) = 𝑤)
8784, 85op2ndd 7932 . . . . . . . . . 10 (𝑏 = ⟨𝑤, 𝑗⟩ → (2nd𝑏) = 𝑗)
8886, 87oveq12d 7364 . . . . . . . . 9 (𝑏 = ⟨𝑤, 𝑗⟩ → ((1st𝑏) prefix (2nd𝑏)) = (𝑤 prefix 𝑗))
8986fveq2d 6826 . . . . . . . . . . 11 (𝑏 = ⟨𝑤, 𝑗⟩ → (♯‘(1st𝑏)) = (♯‘𝑤))
9087, 89opeq12d 4830 . . . . . . . . . 10 (𝑏 = ⟨𝑤, 𝑗⟩ → ⟨(2nd𝑏), (♯‘(1st𝑏))⟩ = ⟨𝑗, (♯‘𝑤)⟩)
9186, 90oveq12d 7364 . . . . . . . . 9 (𝑏 = ⟨𝑤, 𝑗⟩ → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))
9288, 91opeq12d 4830 . . . . . . . 8 (𝑏 = ⟨𝑤, 𝑗⟩ → ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ = ⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)
9392fveq2d 6826 . . . . . . 7 (𝑏 = ⟨𝑤, 𝑗⟩ → (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩) = (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))
9437eleq2d 2817 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↔ 𝑤 ∈ Word 𝐴))
9594biimpa 476 . . . . . . . . 9 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → 𝑤 ∈ Word 𝐴)
9695adantr 480 . . . . . . . 8 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → 𝑤 ∈ Word 𝐴)
97 ovexd 7381 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ Word 𝐴) → (0...(♯‘𝑥)) ∈ V)
98 nfcv 2894 . . . . . . . . . . . 12 𝑥(0...(♯‘𝑤))
99 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (♯‘𝑥) = (♯‘𝑤))
10099oveq2d 7362 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (0...(♯‘𝑥)) = (0...(♯‘𝑤)))
1019, 97, 98, 100iunsnima2 32602 . . . . . . . . . . 11 ((𝜑𝑤 ∈ Word 𝐴) → ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) = (0...(♯‘𝑤)))
10295, 101syldan 591 . . . . . . . . . 10 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) = (0...(♯‘𝑤)))
103102eleq2d 2817 . . . . . . . . 9 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↔ 𝑗 ∈ (0...(♯‘𝑤))))
104103biimpa 476 . . . . . . . 8 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → 𝑗 ∈ (0...(♯‘𝑤)))
105100opeliunxp2 5777 . . . . . . . 8 (⟨𝑤, 𝑗⟩ ∈ 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↔ (𝑤 ∈ Word 𝐴𝑗 ∈ (0...(♯‘𝑤))))
10696, 104, 105sylanbrc 583 . . . . . . 7 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → ⟨𝑤, 𝑗⟩ ∈ 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))))
107 fvexd 6837 . . . . . . 7 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩) ∈ V)
10883, 93, 106, 107fvmptd3 6952 . . . . . 6 (((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) ∧ 𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤})) → ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩) = (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))
109108mpteq2dva 5182 . . . . 5 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩)) = (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))
110109oveq2d 7362 . . . 4 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))) = (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))
111110mpteq2dva 5182 . . 3 (𝜑 → (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩)))) = (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))))
112111oveq2d 7362 . 2 (𝜑 → (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ ((𝑏 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝐹‘⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))‘⟨𝑤, 𝑗⟩))))) = (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
113102mpteq1d 5179 . . . . 5 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)) = (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))
114113oveq2d 7362 . . . 4 ((𝜑𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥)))) → (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))) = (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))
11537, 114mpteq12dva 5175 . . 3 (𝜑 → (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))) = (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩)))))
116115oveq2d 7362 . 2 (𝜑 → (𝑀 Σg (𝑤 ∈ dom 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) ↦ (𝑀 Σg (𝑗 ∈ ( 𝑥 ∈ Word 𝐴({𝑥} × (0...(♯‘𝑥))) “ {𝑤}) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))) = (𝑀 Σg (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
11782, 112, 1163eqtrd 2770 1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg (𝑤 ∈ Word 𝐴 ↦ (𝑀 Σg (𝑗 ∈ (0...(♯‘𝑤)) ↦ (𝐹‘⟨(𝑤 prefix 𝑗), (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)⟩))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  dom cdm 5614  cima 5617  ccom 5618  Rel wrel 5619  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920   finSupp cfsupp 9245  0cc0 11006  0cn0 12381  cuz 12732  ...cfz 13407  chash 14237  Word cword 14420   ++ cconcat 14477   substr csubstr 14548   prefix cpfx 14578  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-word 14421  df-concat 14478  df-substr 14549  df-pfx 14579  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694
This theorem is referenced by:  elrgspnlem2  33210
  Copyright terms: Public domain W3C validator