MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structiedg0val Structured version   Visualization version   GIF version

Theorem structiedg0val 29059
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structvtxvallem.s 𝑆 ∈ ℕ
structvtxvallem.b (Base‘ndx) < 𝑆
structvtxvallem.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
Assertion
Ref Expression
structiedg0val ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)

Proof of Theorem structiedg0val
StepHypRef Expression
1 structvtxvallem.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
2 structvtxvallem.b . . . . 5 (Base‘ndx) < 𝑆
3 structvtxvallem.s . . . . 5 𝑆 ∈ ℕ
41, 2, 32strstr1 17285 . . . 4 𝐺 Struct ⟨(Base‘ndx), 𝑆
5 structn0fun 17200 . . . . 5 (𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ → Fun (𝐺 ∖ {∅}))
63, 2, 1structvtxvallem 29057 . . . . 5 ((𝑉𝑋𝐸𝑌) → 2 ≤ (♯‘dom 𝐺))
7 funiedgdmge2val 29049 . . . . 5 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺))
85, 6, 7syl2an 595 . . . 4 ((𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ ∧ (𝑉𝑋𝐸𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺))
94, 8mpan 689 . . 3 ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (.ef‘𝐺))
1093adant3 1132 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺))
11 prex 5452 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V
1211a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V)
131, 12eqeltrid 2848 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → 𝐺 ∈ V)
14 edgfndxid 29028 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
151, 13, 14mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
16 basendxnedgfndx 29032 . . . . . . . . 9 (Base‘ndx) ≠ (.ef‘ndx)
1716nesymi 3004 . . . . . . . 8 ¬ (.ef‘ndx) = (Base‘ndx)
1817a1i 11 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx))
19 neneq 2952 . . . . . . . . 9 (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx))
20 eqcom 2747 . . . . . . . . 9 ((.ef‘ndx) = 𝑆𝑆 = (.ef‘ndx))
2119, 20sylnibr 329 . . . . . . . 8 (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆)
22213ad2ant3 1135 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆)
23 ioran 984 . . . . . . 7 (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆))
2418, 22, 23sylanbrc 582 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
25 fvex 6935 . . . . . . 7 (.ef‘ndx) ∈ V
2625elpr 4672 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
2724, 26sylnibr 329 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆})
281dmeqi 5929 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
29 dmpropg 6248 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
30293adant3 1132 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
3128, 30eqtrid 2792 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆})
3227, 31neleqtrrd 2867 . . . 4 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺)
33 ndmfv 6957 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
3432, 33syl 17 . . 3 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅)
3515, 34eqtrid 2792 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅)
3610, 35eqtrd 2780 1 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  c0 4352  {csn 4648  {cpr 4650  cop 4654   class class class wbr 5166  dom cdm 5700  Fun wfun 6569  cfv 6575   < clt 11326  cle 11327  cn 12295  2c2 12350  chash 14381   Struct cstr 17195  ndxcnx 17242  Basecbs 17260  .efcedgf 29023  iEdgciedg 29034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-oadd 8528  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-xnn0 12628  df-z 12642  df-dec 12761  df-uz 12906  df-fz 13570  df-hash 14382  df-struct 17196  df-slot 17231  df-ndx 17243  df-base 17261  df-edgf 29024  df-iedg 29036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator