![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > structiedg0val | Structured version Visualization version GIF version |
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
Ref | Expression |
---|---|
structvtxvallem.s | ⊢ 𝑆 ∈ ℕ |
structvtxvallem.b | ⊢ (Base‘ndx) < 𝑆 |
structvtxvallem.g | ⊢ 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} |
Ref | Expression |
---|---|
structiedg0val | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structvtxvallem.g | . . . . 5 ⊢ 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} | |
2 | structvtxvallem.b | . . . . 5 ⊢ (Base‘ndx) < 𝑆 | |
3 | structvtxvallem.s | . . . . 5 ⊢ 𝑆 ∈ ℕ | |
4 | 1, 2, 3 | 2strstr1 17196 | . . . 4 ⊢ 𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ |
5 | structn0fun 17111 | . . . . 5 ⊢ (𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ → Fun (𝐺 ∖ {∅})) | |
6 | 3, 2, 1 | structvtxvallem 28820 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2 ≤ (♯‘dom 𝐺)) |
7 | funiedgdmge2val 28812 | . . . . 5 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺)) | |
8 | 5, 6, 7 | syl2an 595 | . . . 4 ⊢ ((𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ ∧ (𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺)) |
9 | 4, 8 | mpan 689 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (.ef‘𝐺)) |
10 | 9 | 3adant3 1130 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺)) |
11 | prex 5428 | . . . . . 6 ⊢ {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V) |
13 | 1, 12 | eqeltrid 2832 | . . . 4 ⊢ (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → 𝐺 ∈ V) |
14 | edgfndxid 28791 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
15 | 1, 13, 14 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
16 | basendxnedgfndx 28795 | . . . . . . . . 9 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
17 | 16 | nesymi 2993 | . . . . . . . 8 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx)) |
19 | neneq 2941 | . . . . . . . . 9 ⊢ (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx)) | |
20 | eqcom 2734 | . . . . . . . . 9 ⊢ ((.ef‘ndx) = 𝑆 ↔ 𝑆 = (.ef‘ndx)) | |
21 | 19, 20 | sylnibr 329 | . . . . . . . 8 ⊢ (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆) |
22 | 21 | 3ad2ant3 1133 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆) |
23 | ioran 982 | . . . . . . 7 ⊢ (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆)) | |
24 | 18, 22, 23 | sylanbrc 582 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆)) |
25 | fvex 6904 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
26 | 25 | elpr 4647 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆)) |
27 | 24, 26 | sylnibr 329 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆}) |
28 | 1 | dmeqi 5901 | . . . . . 6 ⊢ dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} |
29 | dmpropg 6213 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆}) | |
30 | 29 | 3adant3 1130 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆}) |
31 | 28, 30 | eqtrid 2779 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆}) |
32 | 27, 31 | neleqtrrd 2851 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
33 | ndmfv 6926 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
34 | 32, 33 | syl 17 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅) |
35 | 15, 34 | eqtrid 2779 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅) |
36 | 10, 35 | eqtrd 2767 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 Vcvv 3469 ∖ cdif 3941 ∅c0 4318 {csn 4624 {cpr 4626 ⟨cop 4630 class class class wbr 5142 dom cdm 5672 Fun wfun 6536 ‘cfv 6542 < clt 11270 ≤ cle 11271 ℕcn 12234 2c2 12289 ♯chash 14313 Struct cstr 17106 ndxcnx 17153 Basecbs 17171 .efcedgf 28786 iEdgciedg 28797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-xnn0 12567 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-hash 14314 df-struct 17107 df-slot 17142 df-ndx 17154 df-base 17172 df-edgf 28787 df-iedg 28799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |