| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > structiedg0val | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| structvtxvallem.s | ⊢ 𝑆 ∈ ℕ |
| structvtxvallem.b | ⊢ (Base‘ndx) < 𝑆 |
| structvtxvallem.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} |
| Ref | Expression |
|---|---|
| structiedg0val | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structvtxvallem.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} | |
| 2 | structvtxvallem.b | . . . . 5 ⊢ (Base‘ndx) < 𝑆 | |
| 3 | structvtxvallem.s | . . . . 5 ⊢ 𝑆 ∈ ℕ | |
| 4 | 1, 2, 3 | 2strstr 17138 | . . . 4 ⊢ 𝐺 Struct 〈(Base‘ndx), 𝑆〉 |
| 5 | structn0fun 17062 | . . . . 5 ⊢ (𝐺 Struct 〈(Base‘ndx), 𝑆〉 → Fun (𝐺 ∖ {∅})) | |
| 6 | 3, 2, 1 | structvtxvallem 28998 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2 ≤ (♯‘dom 𝐺)) |
| 7 | funiedgdmge2val 28990 | . . . . 5 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺)) | |
| 8 | 5, 6, 7 | syl2an 596 | . . . 4 ⊢ ((𝐺 Struct 〈(Base‘ndx), 𝑆〉 ∧ (𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 9 | 4, 8 | mpan 690 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 10 | 9 | 3adant3 1132 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 11 | prex 5373 | . . . . . 6 ⊢ {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} → {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ∈ V) |
| 13 | 1, 12 | eqeltrid 2835 | . . . 4 ⊢ (𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} → 𝐺 ∈ V) |
| 14 | edgfndxid 28971 | . . . 4 ⊢ (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | |
| 15 | 1, 13, 14 | mp2b 10 | . . 3 ⊢ (.ef‘𝐺) = (𝐺‘(.ef‘ndx)) |
| 16 | basendxnedgfndx 28973 | . . . . . . . . 9 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
| 17 | 16 | nesymi 2985 | . . . . . . . 8 ⊢ ¬ (.ef‘ndx) = (Base‘ndx) |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx)) |
| 19 | neneq 2934 | . . . . . . . . 9 ⊢ (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx)) | |
| 20 | eqcom 2738 | . . . . . . . . 9 ⊢ ((.ef‘ndx) = 𝑆 ↔ 𝑆 = (.ef‘ndx)) | |
| 21 | 19, 20 | sylnibr 329 | . . . . . . . 8 ⊢ (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆) |
| 22 | 21 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆) |
| 23 | ioran 985 | . . . . . . 7 ⊢ (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆)) | |
| 24 | 18, 22, 23 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆)) |
| 25 | fvex 6835 | . . . . . . 7 ⊢ (.ef‘ndx) ∈ V | |
| 26 | 25 | elpr 4598 | . . . . . 6 ⊢ ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆)) |
| 27 | 24, 26 | sylnibr 329 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆}) |
| 28 | 1 | dmeqi 5843 | . . . . . 6 ⊢ dom 𝐺 = dom {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} |
| 29 | dmpropg 6162 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → dom {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} = {(Base‘ndx), 𝑆}) | |
| 30 | 29 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} = {(Base‘ndx), 𝑆}) |
| 31 | 28, 30 | eqtrid 2778 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆}) |
| 32 | 27, 31 | neleqtrrd 2854 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺) |
| 33 | ndmfv 6854 | . . . 4 ⊢ (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅) | |
| 34 | 32, 33 | syl 17 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅) |
| 35 | 15, 34 | eqtrid 2778 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅) |
| 36 | 10, 35 | eqtrd 2766 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ∅c0 4280 {csn 4573 {cpr 4575 〈cop 4579 class class class wbr 5089 dom cdm 5614 Fun wfun 6475 ‘cfv 6481 < clt 11146 ≤ cle 11147 ℕcn 12125 2c2 12180 ♯chash 14237 Struct cstr 17057 ndxcnx 17104 Basecbs 17120 .efcedgf 28966 iEdgciedg 28975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28967 df-iedg 28977 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |