MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structiedg0val Structured version   Visualization version   GIF version

Theorem structiedg0val 28967
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structvtxvallem.s 𝑆 ∈ ℕ
structvtxvallem.b (Base‘ndx) < 𝑆
structvtxvallem.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
Assertion
Ref Expression
structiedg0val ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)

Proof of Theorem structiedg0val
StepHypRef Expression
1 structvtxvallem.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
2 structvtxvallem.b . . . . 5 (Base‘ndx) < 𝑆
3 structvtxvallem.s . . . . 5 𝑆 ∈ ℕ
41, 2, 32strstr 17138 . . . 4 𝐺 Struct ⟨(Base‘ndx), 𝑆
5 structn0fun 17062 . . . . 5 (𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ → Fun (𝐺 ∖ {∅}))
63, 2, 1structvtxvallem 28965 . . . . 5 ((𝑉𝑋𝐸𝑌) → 2 ≤ (♯‘dom 𝐺))
7 funiedgdmge2val 28957 . . . . 5 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺))
85, 6, 7syl2an 596 . . . 4 ((𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ ∧ (𝑉𝑋𝐸𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺))
94, 8mpan 690 . . 3 ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (.ef‘𝐺))
1093adant3 1132 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺))
11 prex 5376 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V
1211a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V)
131, 12eqeltrid 2832 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → 𝐺 ∈ V)
14 edgfndxid 28938 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
151, 13, 14mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
16 basendxnedgfndx 28940 . . . . . . . . 9 (Base‘ndx) ≠ (.ef‘ndx)
1716nesymi 2982 . . . . . . . 8 ¬ (.ef‘ndx) = (Base‘ndx)
1817a1i 11 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx))
19 neneq 2931 . . . . . . . . 9 (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx))
20 eqcom 2736 . . . . . . . . 9 ((.ef‘ndx) = 𝑆𝑆 = (.ef‘ndx))
2119, 20sylnibr 329 . . . . . . . 8 (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆)
22213ad2ant3 1135 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆)
23 ioran 985 . . . . . . 7 (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆))
2418, 22, 23sylanbrc 583 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
25 fvex 6835 . . . . . . 7 (.ef‘ndx) ∈ V
2625elpr 4602 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
2724, 26sylnibr 329 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆})
281dmeqi 5847 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
29 dmpropg 6164 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
30293adant3 1132 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
3128, 30eqtrid 2776 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆})
3227, 31neleqtrrd 2851 . . . 4 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺)
33 ndmfv 6855 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
3432, 33syl 17 . . 3 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅)
3515, 34eqtrid 2776 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅)
3610, 35eqtrd 2764 1 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cdif 3900  c0 4284  {csn 4577  {cpr 4579  cop 4583   class class class wbr 5092  dom cdm 5619  Fun wfun 6476  cfv 6482   < clt 11149  cle 11150  cn 12128  2c2 12183  chash 14237   Struct cstr 17057  ndxcnx 17104  Basecbs 17120  .efcedgf 28933  iEdgciedg 28942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28934  df-iedg 28944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator