MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structiedg0val Structured version   Visualization version   GIF version

Theorem structiedg0val 28955
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structvtxvallem.s 𝑆 ∈ ℕ
structvtxvallem.b (Base‘ndx) < 𝑆
structvtxvallem.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
Assertion
Ref Expression
structiedg0val ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)

Proof of Theorem structiedg0val
StepHypRef Expression
1 structvtxvallem.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
2 structvtxvallem.b . . . . 5 (Base‘ndx) < 𝑆
3 structvtxvallem.s . . . . 5 𝑆 ∈ ℕ
41, 2, 32strstr 17203 . . . 4 𝐺 Struct ⟨(Base‘ndx), 𝑆
5 structn0fun 17127 . . . . 5 (𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ → Fun (𝐺 ∖ {∅}))
63, 2, 1structvtxvallem 28953 . . . . 5 ((𝑉𝑋𝐸𝑌) → 2 ≤ (♯‘dom 𝐺))
7 funiedgdmge2val 28945 . . . . 5 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺))
85, 6, 7syl2an 596 . . . 4 ((𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ ∧ (𝑉𝑋𝐸𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺))
94, 8mpan 690 . . 3 ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (.ef‘𝐺))
1093adant3 1132 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺))
11 prex 5394 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V
1211a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V)
131, 12eqeltrid 2833 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → 𝐺 ∈ V)
14 edgfndxid 28926 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
151, 13, 14mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
16 basendxnedgfndx 28928 . . . . . . . . 9 (Base‘ndx) ≠ (.ef‘ndx)
1716nesymi 2983 . . . . . . . 8 ¬ (.ef‘ndx) = (Base‘ndx)
1817a1i 11 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx))
19 neneq 2932 . . . . . . . . 9 (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx))
20 eqcom 2737 . . . . . . . . 9 ((.ef‘ndx) = 𝑆𝑆 = (.ef‘ndx))
2119, 20sylnibr 329 . . . . . . . 8 (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆)
22213ad2ant3 1135 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆)
23 ioran 985 . . . . . . 7 (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆))
2418, 22, 23sylanbrc 583 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
25 fvex 6873 . . . . . . 7 (.ef‘ndx) ∈ V
2625elpr 4616 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
2724, 26sylnibr 329 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆})
281dmeqi 5870 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
29 dmpropg 6190 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
30293adant3 1132 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
3128, 30eqtrid 2777 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆})
3227, 31neleqtrrd 2852 . . . 4 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺)
33 ndmfv 6895 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
3432, 33syl 17 . . 3 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅)
3515, 34eqtrid 2777 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅)
3610, 35eqtrd 2765 1 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3913  c0 4298  {csn 4591  {cpr 4593  cop 4597   class class class wbr 5109  dom cdm 5640  Fun wfun 6507  cfv 6513   < clt 11214  cle 11215  cn 12187  2c2 12242  chash 14301   Struct cstr 17122  ndxcnx 17169  Basecbs 17185  .efcedgf 28921  iEdgciedg 28930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-hash 14302  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28922  df-iedg 28932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator