MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structiedg0val Structured version   Visualization version   GIF version

Theorem structiedg0val 27392
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structvtxvallem.s 𝑆 ∈ ℕ
structvtxvallem.b (Base‘ndx) < 𝑆
structvtxvallem.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
Assertion
Ref Expression
structiedg0val ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)

Proof of Theorem structiedg0val
StepHypRef Expression
1 structvtxvallem.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
2 structvtxvallem.b . . . . 5 (Base‘ndx) < 𝑆
3 structvtxvallem.s . . . . 5 𝑆 ∈ ℕ
41, 2, 32strstr1 16937 . . . 4 𝐺 Struct ⟨(Base‘ndx), 𝑆
5 structn0fun 16852 . . . . 5 (𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ → Fun (𝐺 ∖ {∅}))
63, 2, 1structvtxvallem 27390 . . . . 5 ((𝑉𝑋𝐸𝑌) → 2 ≤ (♯‘dom 𝐺))
7 funiedgdmge2val 27382 . . . . 5 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺))
85, 6, 7syl2an 596 . . . 4 ((𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ ∧ (𝑉𝑋𝐸𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺))
94, 8mpan 687 . . 3 ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (.ef‘𝐺))
1093adant3 1131 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺))
11 prex 5355 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V
1211a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V)
131, 12eqeltrid 2843 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → 𝐺 ∈ V)
14 edgfndxid 27361 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
151, 13, 14mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
16 basendxnedgfndx 27365 . . . . . . . . 9 (Base‘ndx) ≠ (.ef‘ndx)
1716nesymi 3001 . . . . . . . 8 ¬ (.ef‘ndx) = (Base‘ndx)
1817a1i 11 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx))
19 neneq 2949 . . . . . . . . 9 (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx))
20 eqcom 2745 . . . . . . . . 9 ((.ef‘ndx) = 𝑆𝑆 = (.ef‘ndx))
2119, 20sylnibr 329 . . . . . . . 8 (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆)
22213ad2ant3 1134 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆)
23 ioran 981 . . . . . . 7 (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆))
2418, 22, 23sylanbrc 583 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
25 fvex 6787 . . . . . . 7 (.ef‘ndx) ∈ V
2625elpr 4584 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
2724, 26sylnibr 329 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆})
281dmeqi 5813 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
29 dmpropg 6118 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
30293adant3 1131 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
3128, 30eqtrid 2790 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆})
3227, 31neleqtrrd 2861 . . . 4 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺)
33 ndmfv 6804 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
3432, 33syl 17 . . 3 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅)
3515, 34eqtrid 2790 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅)
3610, 35eqtrd 2778 1 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  c0 4256  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  dom cdm 5589  Fun wfun 6427  cfv 6433   < clt 11009  cle 11010  cn 11973  2c2 12028  chash 14044   Struct cstr 16847  ndxcnx 16894  Basecbs 16912  .efcedgf 27356  iEdgciedg 27367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-hash 14045  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-edgf 27357  df-iedg 27369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator