MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structiedg0val Structured version   Visualization version   GIF version

Theorem structiedg0val 29065
Description: The set of indexed edges of an extensible structure with a base set and another slot not being the slot for edge functions is empty. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
structvtxvallem.s 𝑆 ∈ ℕ
structvtxvallem.b (Base‘ndx) < 𝑆
structvtxvallem.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
Assertion
Ref Expression
structiedg0val ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)

Proof of Theorem structiedg0val
StepHypRef Expression
1 structvtxvallem.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
2 structvtxvallem.b . . . . 5 (Base‘ndx) < 𝑆
3 structvtxvallem.s . . . . 5 𝑆 ∈ ℕ
41, 2, 32strstr1 17279 . . . 4 𝐺 Struct ⟨(Base‘ndx), 𝑆
5 structn0fun 17194 . . . . 5 (𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ → Fun (𝐺 ∖ {∅}))
63, 2, 1structvtxvallem 29063 . . . . 5 ((𝑉𝑋𝐸𝑌) → 2 ≤ (♯‘dom 𝐺))
7 funiedgdmge2val 29055 . . . . 5 ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺))
85, 6, 7syl2an 596 . . . 4 ((𝐺 Struct ⟨(Base‘ndx), 𝑆⟩ ∧ (𝑉𝑋𝐸𝑌)) → (iEdg‘𝐺) = (.ef‘𝐺))
94, 8mpan 690 . . 3 ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (.ef‘𝐺))
1093adant3 1133 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = (.ef‘𝐺))
11 prex 5446 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V
1211a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} ∈ V)
131, 12eqeltrid 2845 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} → 𝐺 ∈ V)
14 edgfndxid 29034 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
151, 13, 14mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
16 basendxnedgfndx 29038 . . . . . . . . 9 (Base‘ndx) ≠ (.ef‘ndx)
1716nesymi 2998 . . . . . . . 8 ¬ (.ef‘ndx) = (Base‘ndx)
1817a1i 11 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = (Base‘ndx))
19 neneq 2946 . . . . . . . . 9 (𝑆 ≠ (.ef‘ndx) → ¬ 𝑆 = (.ef‘ndx))
20 eqcom 2744 . . . . . . . . 9 ((.ef‘ndx) = 𝑆𝑆 = (.ef‘ndx))
2119, 20sylnibr 329 . . . . . . . 8 (𝑆 ≠ (.ef‘ndx) → ¬ (.ef‘ndx) = 𝑆)
22213ad2ant3 1136 . . . . . . 7 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) = 𝑆)
23 ioran 986 . . . . . . 7 (¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆) ↔ (¬ (.ef‘ndx) = (Base‘ndx) ∧ ¬ (.ef‘ndx) = 𝑆))
2418, 22, 23sylanbrc 583 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
25 fvex 6927 . . . . . . 7 (.ef‘ndx) ∈ V
2625elpr 4658 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx), 𝑆} ↔ ((.ef‘ndx) = (Base‘ndx) ∨ (.ef‘ndx) = 𝑆))
2724, 26sylnibr 329 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ {(Base‘ndx), 𝑆})
281dmeqi 5922 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩}
29 dmpropg 6243 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
30293adant3 1133 . . . . . 6 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom {⟨(Base‘ndx), 𝑉⟩, ⟨𝑆, 𝐸⟩} = {(Base‘ndx), 𝑆})
3128, 30eqtrid 2789 . . . . 5 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → dom 𝐺 = {(Base‘ndx), 𝑆})
3227, 31neleqtrrd 2864 . . . 4 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → ¬ (.ef‘ndx) ∈ dom 𝐺)
33 ndmfv 6949 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
3432, 33syl 17 . . 3 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (𝐺‘(.ef‘ndx)) = ∅)
3515, 34eqtrid 2789 . 2 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (.ef‘𝐺) = ∅)
3610, 35eqtrd 2777 1 ((𝑉𝑋𝐸𝑌𝑆 ≠ (.ef‘ndx)) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  w3a 1087   = wceq 1539  wcel 2108  wne 2940  Vcvv 3481  cdif 3963  c0 4342  {csn 4634  {cpr 4636  cop 4640   class class class wbr 5151  dom cdm 5693  Fun wfun 6563  cfv 6569   < clt 11302  cle 11303  cn 12273  2c2 12328  chash 14375   Struct cstr 17189  ndxcnx 17236  Basecbs 17254  .efcedgf 29029  iEdgciedg 29040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-oadd 8518  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-dju 9948  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-xnn0 12607  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-hash 14376  df-struct 17190  df-slot 17225  df-ndx 17237  df-base 17255  df-edgf 29030  df-iedg 29042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator