| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnprg | Structured version Visualization version GIF version | ||
| Description: Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnprg | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funprg 6595 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | |
| 2 | dmpropg 6209 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
| 3 | 2 | 3ad2ant2 1134 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
| 4 | df-fn 6539 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵} ↔ (Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∧ dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵})) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} Fn {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {cpr 4608 〈cop 4612 dom cdm 5659 Fun wfun 6530 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-fun 6538 df-fn 6539 |
| This theorem is referenced by: f1oprswap 6867 fnpr2o 17576 zlmodzxzscm 48299 zlmodzxzadd 48300 |
| Copyright terms: Public domain | W3C validator |