![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnprg | Structured version Visualization version GIF version |
Description: Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
fnprg | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funprg 6602 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}) | |
2 | dmpropg 6214 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}) | |
3 | 2 | 3ad2ant2 1134 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵}) |
4 | df-fn 6546 | . 2 ⊢ ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵} ↔ (Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵})) | |
5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 {cpr 4630 ⟨cop 4634 dom cdm 5676 Fun wfun 6537 Fn wfn 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-fun 6545 df-fn 6546 |
This theorem is referenced by: f1oprswap 6877 fnpr2o 17502 zlmodzxzscm 47023 zlmodzxzadd 47024 |
Copyright terms: Public domain | W3C validator |