MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4dom Structured version   Visualization version   GIF version

Theorem s4dom 14826
Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
s4dom (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3})))

Proof of Theorem s4dom
StepHypRef Expression
1 dmeq 5846 . . 3 (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = dom ⟨“𝐴𝐵𝐶𝐷”⟩)
2 s4prop 14817 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
32dmeqd 5848 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
4 dmun 5853 . . . . 5 dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = (dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
5 dmpropg 6164 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = {0, 1})
65adantr 480 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = {0, 1})
7 dmpropg 6164 . . . . . . 7 ((𝐶𝑆𝐷𝑆) → dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩} = {2, 3})
87adantl 481 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩} = {2, 3})
96, 8uneq12d 4120 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = ({0, 1} ∪ {2, 3}))
104, 9eqtrid 2776 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = ({0, 1} ∪ {2, 3}))
113, 10eqtrd 2764 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = ({0, 1} ∪ {2, 3}))
121, 11sylan9eqr 2786 . 2 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → dom 𝐸 = ({0, 1} ∪ {2, 3}))
1312ex 412 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  {cpr 4579  cop 4583  dom cdm 5619  0cc0 11009  1c1 11010  2c2 12183  3c3 12184  ⟨“cs4 14750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-s4 14757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator