![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s4dom | Structured version Visualization version GIF version |
Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017.) |
Ref | Expression |
---|---|
s4dom | ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐸 = 〈“𝐴𝐵𝐶𝐷”〉 → dom 𝐸 = ({0, 1} ∪ {2, 3}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5910 | . . 3 ⊢ (𝐸 = 〈“𝐴𝐵𝐶𝐷”〉 → dom 𝐸 = dom 〈“𝐴𝐵𝐶𝐷”〉) | |
2 | s4prop 14919 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 〈“𝐴𝐵𝐶𝐷”〉 = ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉, 〈3, 𝐷〉})) | |
3 | 2 | dmeqd 5912 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → dom 〈“𝐴𝐵𝐶𝐷”〉 = dom ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉, 〈3, 𝐷〉})) |
4 | dmun 5917 | . . . . 5 ⊢ dom ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉, 〈3, 𝐷〉}) = (dom {〈0, 𝐴〉, 〈1, 𝐵〉} ∪ dom {〈2, 𝐶〉, 〈3, 𝐷〉}) | |
5 | dmpropg 6226 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → dom {〈0, 𝐴〉, 〈1, 𝐵〉} = {0, 1}) | |
6 | 5 | adantr 479 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → dom {〈0, 𝐴〉, 〈1, 𝐵〉} = {0, 1}) |
7 | dmpropg 6226 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → dom {〈2, 𝐶〉, 〈3, 𝐷〉} = {2, 3}) | |
8 | 7 | adantl 480 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → dom {〈2, 𝐶〉, 〈3, 𝐷〉} = {2, 3}) |
9 | 6, 8 | uneq12d 4164 | . . . . 5 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (dom {〈0, 𝐴〉, 〈1, 𝐵〉} ∪ dom {〈2, 𝐶〉, 〈3, 𝐷〉}) = ({0, 1} ∪ {2, 3})) |
10 | 4, 9 | eqtrid 2778 | . . . 4 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → dom ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉, 〈3, 𝐷〉}) = ({0, 1} ∪ {2, 3})) |
11 | 3, 10 | eqtrd 2766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → dom 〈“𝐴𝐵𝐶𝐷”〉 = ({0, 1} ∪ {2, 3})) |
12 | 1, 11 | sylan9eqr 2788 | . 2 ⊢ ((((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) ∧ 𝐸 = 〈“𝐴𝐵𝐶𝐷”〉) → dom 𝐸 = ({0, 1} ∪ {2, 3})) |
13 | 12 | ex 411 | 1 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐸 = 〈“𝐴𝐵𝐶𝐷”〉 → dom 𝐸 = ({0, 1} ∪ {2, 3}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 {cpr 4635 〈cop 4639 dom cdm 5682 0cc0 11158 1c1 11159 2c2 12319 3c3 12320 〈“cs4 14852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-fzo 13682 df-hash 14348 df-word 14523 df-concat 14579 df-s1 14604 df-s2 14857 df-s3 14858 df-s4 14859 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |