MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4dom Structured version   Visualization version   GIF version

Theorem s4dom 14866
Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
s4dom (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3})))

Proof of Theorem s4dom
StepHypRef Expression
1 dmeq 5901 . . 3 (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = dom ⟨“𝐴𝐵𝐶𝐷”⟩)
2 s4prop 14857 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
32dmeqd 5903 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
4 dmun 5908 . . . . 5 dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = (dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
5 dmpropg 6211 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = {0, 1})
65adantr 481 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = {0, 1})
7 dmpropg 6211 . . . . . . 7 ((𝐶𝑆𝐷𝑆) → dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩} = {2, 3})
87adantl 482 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩} = {2, 3})
96, 8uneq12d 4163 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = ({0, 1} ∪ {2, 3}))
104, 9eqtrid 2784 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = ({0, 1} ∪ {2, 3}))
113, 10eqtrd 2772 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = ({0, 1} ∪ {2, 3}))
121, 11sylan9eqr 2794 . 2 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → dom 𝐸 = ({0, 1} ∪ {2, 3}))
1312ex 413 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cun 3945  {cpr 4629  cop 4633  dom cdm 5675  0cc0 11106  1c1 11107  2c2 12263  3c3 12264  ⟨“cs4 14790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-s4 14797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator