MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4dom Structured version   Visualization version   GIF version

Theorem s4dom 14896
Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
Assertion
Ref Expression
s4dom (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3})))

Proof of Theorem s4dom
StepHypRef Expression
1 dmeq 5900 . . 3 (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = dom ⟨“𝐴𝐵𝐶𝐷”⟩)
2 s4prop 14887 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
32dmeqd 5902 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
4 dmun 5907 . . . . 5 dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = (dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
5 dmpropg 6213 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = {0, 1})
65adantr 480 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} = {0, 1})
7 dmpropg 6213 . . . . . . 7 ((𝐶𝑆𝐷𝑆) → dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩} = {2, 3})
87adantl 481 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩} = {2, 3})
96, 8uneq12d 4160 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (dom {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ dom {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = ({0, 1} ∪ {2, 3}))
104, 9eqtrid 2780 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = ({0, 1} ∪ {2, 3}))
113, 10eqtrd 2768 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → dom ⟨“𝐴𝐵𝐶𝐷”⟩ = ({0, 1} ∪ {2, 3}))
121, 11sylan9eqr 2790 . 2 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → dom 𝐸 = ({0, 1} ∪ {2, 3}))
1312ex 412 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cun 3943  {cpr 4626  cop 4630  dom cdm 5672  0cc0 11132  1c1 11133  2c2 12291  3c3 12292  ⟨“cs4 14820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-hash 14316  df-word 14491  df-concat 14547  df-s1 14572  df-s2 14825  df-s3 14826  df-s4 14827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator