![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashdmpropge2 | Structured version Visualization version GIF version |
Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021.) |
Ref | Expression |
---|---|
hashdmpropge2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
hashdmpropge2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
hashdmpropge2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
hashdmpropge2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
hashdmpropge2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑍) |
hashdmpropge2.n | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
hashdmpropge2.s | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) |
Ref | Expression |
---|---|
hashdmpropge2 | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashdmpropge2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑍) | |
2 | 1 | dmexd 7943 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
3 | hashdmpropge2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
4 | hashdmpropge2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
5 | dmpropg 6246 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
6 | 3, 4, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
7 | hashdmpropge2.s | . . . . 5 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) | |
8 | dmss 5927 | . . . . 5 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) |
10 | 6, 9 | eqsstrrd 4048 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹) |
11 | hashdmpropge2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | hashdmpropge2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
13 | prssg 4844 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) | |
14 | 11, 12, 13 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) |
15 | hashdmpropge2.n | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
16 | neeq1 3009 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
17 | neeq2 3010 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
18 | 16, 17 | rspc2ev 3648 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
19 | 18 | 3expa 1118 | . . . . . 6 ⊢ (((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
20 | 19 | expcom 413 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
21 | 15, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
22 | 14, 21 | sylbird 260 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ dom 𝐹 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
23 | 10, 22 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
24 | hashge2el2difr 14530 | . 2 ⊢ ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) → 2 ≤ (♯‘dom 𝐹)) | |
25 | 2, 23, 24 | syl2anc 583 | 1 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 {cpr 4650 〈cop 4654 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 ≤ cle 11325 2c2 12348 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: structvtxvallem 29055 structgrssvtxlem 29058 |
Copyright terms: Public domain | W3C validator |