| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashdmpropge2 | Structured version Visualization version GIF version | ||
| Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| hashdmpropge2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| hashdmpropge2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| hashdmpropge2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| hashdmpropge2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| hashdmpropge2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑍) |
| hashdmpropge2.n | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| hashdmpropge2.s | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) |
| Ref | Expression |
|---|---|
| hashdmpropge2 | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashdmpropge2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑍) | |
| 2 | 1 | dmexd 7879 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 3 | hashdmpropge2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 4 | hashdmpropge2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
| 5 | dmpropg 6188 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
| 7 | hashdmpropge2.s | . . . . 5 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) | |
| 8 | dmss 5866 | . . . . 5 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) |
| 10 | 6, 9 | eqsstrrd 3982 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹) |
| 11 | hashdmpropge2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | hashdmpropge2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 13 | prssg 4783 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) | |
| 14 | 11, 12, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) |
| 15 | hashdmpropge2.n | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 16 | neeq1 2987 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
| 17 | neeq2 2988 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
| 18 | 16, 17 | rspc2ev 3601 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
| 19 | 18 | 3expa 1118 | . . . . . 6 ⊢ (((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
| 20 | 19 | expcom 413 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
| 21 | 15, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
| 22 | 14, 21 | sylbird 260 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ dom 𝐹 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
| 23 | 10, 22 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
| 24 | hashge2el2difr 14446 | . 2 ⊢ ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) → 2 ≤ (♯‘dom 𝐹)) | |
| 25 | 2, 23, 24 | syl2anc 584 | 1 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 {cpr 4591 〈cop 4595 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 ≤ cle 11209 2c2 12241 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: structvtxvallem 28947 structgrssvtxlem 28950 |
| Copyright terms: Public domain | W3C validator |