![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashdmpropge2 | Structured version Visualization version GIF version |
Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021.) |
Ref | Expression |
---|---|
hashdmpropge2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
hashdmpropge2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
hashdmpropge2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
hashdmpropge2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
hashdmpropge2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑍) |
hashdmpropge2.n | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
hashdmpropge2.s | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) |
Ref | Expression |
---|---|
hashdmpropge2 | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashdmpropge2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑍) | |
2 | 1 | dmexd 7428 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
3 | hashdmpropge2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
4 | hashdmpropge2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
5 | dmpropg 5908 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
6 | 3, 4, 5 | syl2anc 576 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
7 | hashdmpropge2.s | . . . . 5 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) | |
8 | dmss 5617 | . . . . 5 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) |
10 | 6, 9 | eqsstr3d 3889 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹) |
11 | hashdmpropge2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | hashdmpropge2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
13 | prssg 4622 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) | |
14 | 11, 12, 13 | syl2anc 576 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) |
15 | hashdmpropge2.n | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
16 | neeq1 3022 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
17 | neeq2 3023 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
18 | 16, 17 | rspc2ev 3543 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
19 | 18 | 3expa 1099 | . . . . . 6 ⊢ (((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
20 | 19 | expcom 406 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
21 | 15, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
22 | 14, 21 | sylbird 252 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ dom 𝐹 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
23 | 10, 22 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
24 | hashge2el2difr 13648 | . 2 ⊢ ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) → 2 ≤ (♯‘dom 𝐹)) | |
25 | 2, 23, 24 | syl2anc 576 | 1 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 ∃wrex 3082 Vcvv 3408 ⊆ wss 3822 {cpr 4437 〈cop 4441 class class class wbr 4925 dom cdm 5403 ‘cfv 6185 ≤ cle 10473 2c2 11493 ♯chash 13503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-dju 9122 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-n0 11706 df-xnn0 11778 df-z 11792 df-uz 12057 df-fz 12707 df-hash 13504 |
This theorem is referenced by: structvtxvallem 26523 structgrssvtxlem 26526 |
Copyright terms: Public domain | W3C validator |