MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdmpropge2 Structured version   Visualization version   GIF version

Theorem hashdmpropge2 14532
Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
hashdmpropge2.a (𝜑𝐴𝑉)
hashdmpropge2.b (𝜑𝐵𝑊)
hashdmpropge2.c (𝜑𝐶𝑋)
hashdmpropge2.d (𝜑𝐷𝑌)
hashdmpropge2.f (𝜑𝐹𝑍)
hashdmpropge2.n (𝜑𝐴𝐵)
hashdmpropge2.s (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ 𝐹)
Assertion
Ref Expression
hashdmpropge2 (𝜑 → 2 ≤ (♯‘dom 𝐹))

Proof of Theorem hashdmpropge2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashdmpropge2.f . . 3 (𝜑𝐹𝑍)
21dmexd 7943 . 2 (𝜑 → dom 𝐹 ∈ V)
3 hashdmpropge2.c . . . . 5 (𝜑𝐶𝑋)
4 hashdmpropge2.d . . . . 5 (𝜑𝐷𝑌)
5 dmpropg 6246 . . . . 5 ((𝐶𝑋𝐷𝑌) → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵})
63, 4, 5syl2anc 583 . . . 4 (𝜑 → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵})
7 hashdmpropge2.s . . . . 5 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ 𝐹)
8 dmss 5927 . . . . 5 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ 𝐹 → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ dom 𝐹)
97, 8syl 17 . . . 4 (𝜑 → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ dom 𝐹)
106, 9eqsstrrd 4048 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹)
11 hashdmpropge2.a . . . . 5 (𝜑𝐴𝑉)
12 hashdmpropge2.b . . . . 5 (𝜑𝐵𝑊)
13 prssg 4844 . . . . 5 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹))
1411, 12, 13syl2anc 583 . . . 4 (𝜑 → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹))
15 hashdmpropge2.n . . . . 5 (𝜑𝐴𝐵)
16 neeq1 3009 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑏𝐴𝑏))
17 neeq2 3010 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
1816, 17rspc2ev 3648 . . . . . . 7 ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹𝐴𝐵) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏)
19183expa 1118 . . . . . 6 (((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) ∧ 𝐴𝐵) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏)
2019expcom 413 . . . . 5 (𝐴𝐵 → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏))
2115, 20syl 17 . . . 4 (𝜑 → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏))
2214, 21sylbird 260 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ dom 𝐹 → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏))
2310, 22mpd 15 . 2 (𝜑 → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏)
24 hashge2el2difr 14530 . 2 ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏) → 2 ≤ (♯‘dom 𝐹))
252, 23, 24syl2anc 583 1 (𝜑 → 2 ≤ (♯‘dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  wss 3976  {cpr 4650  cop 4654   class class class wbr 5166  dom cdm 5700  cfv 6573  cle 11325  2c2 12348  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  structvtxvallem  29055  structgrssvtxlem  29058
  Copyright terms: Public domain W3C validator