![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashdmpropge2 | Structured version Visualization version GIF version |
Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021.) |
Ref | Expression |
---|---|
hashdmpropge2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
hashdmpropge2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
hashdmpropge2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
hashdmpropge2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
hashdmpropge2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑍) |
hashdmpropge2.n | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
hashdmpropge2.s | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) |
Ref | Expression |
---|---|
hashdmpropge2 | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashdmpropge2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑍) | |
2 | 1 | dmexd 7820 | . 2 ⊢ (𝜑 → dom 𝐹 ∈ V) |
3 | hashdmpropge2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
4 | hashdmpropge2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
5 | dmpropg 6153 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) | |
6 | 3, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐴, 𝐵}) |
7 | hashdmpropge2.s | . . . . 5 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹) | |
8 | dmss 5844 | . . . . 5 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ 𝐹 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ⊆ dom 𝐹) |
10 | 6, 9 | eqsstrrd 3971 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹) |
11 | hashdmpropge2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | hashdmpropge2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
13 | prssg 4766 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) | |
14 | 11, 12, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹)) |
15 | hashdmpropge2.n | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
16 | neeq1 3003 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) | |
17 | neeq2 3004 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) | |
18 | 16, 17 | rspc2ev 3581 | . . . . . . 7 ⊢ ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
19 | 18 | 3expa 1117 | . . . . . 6 ⊢ (((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) ∧ 𝐴 ≠ 𝐵) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
20 | 19 | expcom 414 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
21 | 15, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
22 | 14, 21 | sylbird 259 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ dom 𝐹 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏)) |
23 | 10, 22 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) |
24 | hashge2el2difr 14295 | . 2 ⊢ ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹∃𝑏 ∈ dom 𝐹 𝑎 ≠ 𝑏) → 2 ≤ (♯‘dom 𝐹)) | |
25 | 2, 23, 24 | syl2anc 584 | 1 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∃wrex 3070 Vcvv 3441 ⊆ wss 3898 {cpr 4575 〈cop 4579 class class class wbr 5092 dom cdm 5620 ‘cfv 6479 ≤ cle 11111 2c2 12129 ♯chash 14145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-fz 13341 df-hash 14146 |
This theorem is referenced by: structvtxvallem 27679 structgrssvtxlem 27682 |
Copyright terms: Public domain | W3C validator |