MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnopg Structured version   Visualization version   GIF version

Theorem rnsnopg 6177
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 5648 . . 3 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
2 dfdm4 5855 . . . 4 dom {⟨𝐵, 𝐴⟩} = ran {⟨𝐵, 𝐴⟩}
3 df-rn 5648 . . . 4 ran {⟨𝐵, 𝐴⟩} = dom {⟨𝐵, 𝐴⟩}
4 cnvcnvsn 6175 . . . . 5 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
54dmeqi 5864 . . . 4 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
62, 3, 53eqtri 2765 . . 3 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
71, 6eqtr4i 2764 . 2 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩}
8 dmsnopg 6169 . 2 (𝐴𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵})
97, 8eqtrid 2785 1 (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {csn 4590  cop 4596  ccnv 5636  dom cdm 5637  ran crn 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-cnv 5645  df-dm 5647  df-rn 5648
This theorem is referenced by:  rnpropg  6178  rnsnop  6180  funcnvpr  6567  funcnvtp  6568  dprdsn  19823  noextend  27037  usgr1e  28242  1loopgredg  28498  1egrvtxdg0  28508  uspgrloopedg  28515  cosnopne  31662  rnsnf  43494
  Copyright terms: Public domain W3C validator