![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnsnopg | Structured version Visualization version GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5687 | . . 3 ⊢ ran {⟨𝐴, 𝐵⟩} = dom ◡{⟨𝐴, 𝐵⟩} | |
2 | dfdm4 5895 | . . . 4 ⊢ dom {⟨𝐵, 𝐴⟩} = ran ◡{⟨𝐵, 𝐴⟩} | |
3 | df-rn 5687 | . . . 4 ⊢ ran ◡{⟨𝐵, 𝐴⟩} = dom ◡◡{⟨𝐵, 𝐴⟩} | |
4 | cnvcnvsn 6218 | . . . . 5 ⊢ ◡◡{⟨𝐵, 𝐴⟩} = ◡{⟨𝐴, 𝐵⟩} | |
5 | 4 | dmeqi 5904 | . . . 4 ⊢ dom ◡◡{⟨𝐵, 𝐴⟩} = dom ◡{⟨𝐴, 𝐵⟩} |
6 | 2, 3, 5 | 3eqtri 2764 | . . 3 ⊢ dom {⟨𝐵, 𝐴⟩} = dom ◡{⟨𝐴, 𝐵⟩} |
7 | 1, 6 | eqtr4i 2763 | . 2 ⊢ ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩} |
8 | dmsnopg 6212 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵}) | |
9 | 7, 8 | eqtrid 2784 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {csn 4628 ⟨cop 4634 ◡ccnv 5675 dom cdm 5676 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: rnpropg 6221 rnsnop 6223 funcnvpr 6610 funcnvtp 6611 dprdsn 19905 noextend 27166 usgr1e 28499 1loopgredg 28755 1egrvtxdg0 28765 uspgrloopedg 28772 cosnopne 31911 rnsnf 43871 |
Copyright terms: Public domain | W3C validator |