MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnopg Structured version   Visualization version   GIF version

Theorem rnsnopg 6197
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 5652 . . 3 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
2 dfdm4 5862 . . . 4 dom {⟨𝐵, 𝐴⟩} = ran {⟨𝐵, 𝐴⟩}
3 df-rn 5652 . . . 4 ran {⟨𝐵, 𝐴⟩} = dom {⟨𝐵, 𝐴⟩}
4 cnvcnvsn 6195 . . . . 5 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
54dmeqi 5871 . . . 4 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
62, 3, 53eqtri 2757 . . 3 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
71, 6eqtr4i 2756 . 2 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩}
8 dmsnopg 6189 . 2 (𝐴𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵})
97, 8eqtrid 2777 1 (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4592  cop 4598  ccnv 5640  dom cdm 5641  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  rnpropg  6198  rnsnop  6200  funcnvpr  6581  funcnvtp  6582  f1ounsn  7250  dprdsn  19975  noextend  27585  usgr1e  29179  1loopgredg  29436  1egrvtxdg0  29446  uspgrloopedg  29453  cosnopne  32624  rnsnf  45185
  Copyright terms: Public domain W3C validator