![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnsnopg | Structured version Visualization version GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5693 | . . 3 ⊢ ran {⟨𝐴, 𝐵⟩} = dom ◡{⟨𝐴, 𝐵⟩} | |
2 | dfdm4 5902 | . . . 4 ⊢ dom {⟨𝐵, 𝐴⟩} = ran ◡{⟨𝐵, 𝐴⟩} | |
3 | df-rn 5693 | . . . 4 ⊢ ran ◡{⟨𝐵, 𝐴⟩} = dom ◡◡{⟨𝐵, 𝐴⟩} | |
4 | cnvcnvsn 6228 | . . . . 5 ⊢ ◡◡{⟨𝐵, 𝐴⟩} = ◡{⟨𝐴, 𝐵⟩} | |
5 | 4 | dmeqi 5911 | . . . 4 ⊢ dom ◡◡{⟨𝐵, 𝐴⟩} = dom ◡{⟨𝐴, 𝐵⟩} |
6 | 2, 3, 5 | 3eqtri 2760 | . . 3 ⊢ dom {⟨𝐵, 𝐴⟩} = dom ◡{⟨𝐴, 𝐵⟩} |
7 | 1, 6 | eqtr4i 2759 | . 2 ⊢ ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩} |
8 | dmsnopg 6222 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵}) | |
9 | 7, 8 | eqtrid 2780 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {csn 4632 ⟨cop 4638 ◡ccnv 5681 dom cdm 5682 ran crn 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 |
This theorem is referenced by: rnpropg 6231 rnsnop 6233 funcnvpr 6620 funcnvtp 6621 dprdsn 20000 noextend 27619 usgr1e 29078 1loopgredg 29335 1egrvtxdg0 29345 uspgrloopedg 29352 cosnopne 32495 rnsnf 44587 |
Copyright terms: Public domain | W3C validator |