| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnsnopg | Structured version Visualization version GIF version | ||
| Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5652 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = dom ◡{〈𝐴, 𝐵〉} | |
| 2 | dfdm4 5862 | . . . 4 ⊢ dom {〈𝐵, 𝐴〉} = ran ◡{〈𝐵, 𝐴〉} | |
| 3 | df-rn 5652 | . . . 4 ⊢ ran ◡{〈𝐵, 𝐴〉} = dom ◡◡{〈𝐵, 𝐴〉} | |
| 4 | cnvcnvsn 6195 | . . . . 5 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
| 5 | 4 | dmeqi 5871 | . . . 4 ⊢ dom ◡◡{〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
| 6 | 2, 3, 5 | 3eqtri 2757 | . . 3 ⊢ dom {〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
| 7 | 1, 6 | eqtr4i 2756 | . 2 ⊢ ran {〈𝐴, 𝐵〉} = dom {〈𝐵, 𝐴〉} |
| 8 | dmsnopg 6189 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝐵, 𝐴〉} = {𝐵}) | |
| 9 | 7, 8 | eqtrid 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 ◡ccnv 5640 dom cdm 5641 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: rnpropg 6198 rnsnop 6200 funcnvpr 6581 funcnvtp 6582 f1ounsn 7250 dprdsn 19975 noextend 27585 usgr1e 29179 1loopgredg 29436 1egrvtxdg0 29446 uspgrloopedg 29453 cosnopne 32624 rnsnf 45185 |
| Copyright terms: Public domain | W3C validator |