MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnopg Structured version   Visualization version   GIF version

Theorem rnsnopg 6170
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 5630 . . 3 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
2 dfdm4 5838 . . . 4 dom {⟨𝐵, 𝐴⟩} = ran {⟨𝐵, 𝐴⟩}
3 df-rn 5630 . . . 4 ran {⟨𝐵, 𝐴⟩} = dom {⟨𝐵, 𝐴⟩}
4 cnvcnvsn 6168 . . . . 5 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
54dmeqi 5847 . . . 4 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
62, 3, 53eqtri 2756 . . 3 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
71, 6eqtr4i 2755 . 2 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩}
8 dmsnopg 6162 . 2 (𝐴𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵})
97, 8eqtrid 2776 1 (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4577  cop 4583  ccnv 5618  dom cdm 5619  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630
This theorem is referenced by:  rnpropg  6171  rnsnop  6173  funcnvpr  6544  funcnvtp  6545  f1ounsn  7209  dprdsn  19917  noextend  27576  usgr1e  29190  1loopgredg  29447  1egrvtxdg0  29457  uspgrloopedg  29464  cosnopne  32637  rnsnf  45172
  Copyright terms: Public domain W3C validator