![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnsnopg | Structured version Visualization version GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5711 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = dom ◡{〈𝐴, 𝐵〉} | |
2 | dfdm4 5920 | . . . 4 ⊢ dom {〈𝐵, 𝐴〉} = ran ◡{〈𝐵, 𝐴〉} | |
3 | df-rn 5711 | . . . 4 ⊢ ran ◡{〈𝐵, 𝐴〉} = dom ◡◡{〈𝐵, 𝐴〉} | |
4 | cnvcnvsn 6250 | . . . . 5 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
5 | 4 | dmeqi 5929 | . . . 4 ⊢ dom ◡◡{〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
6 | 2, 3, 5 | 3eqtri 2772 | . . 3 ⊢ dom {〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
7 | 1, 6 | eqtr4i 2771 | . 2 ⊢ ran {〈𝐴, 𝐵〉} = dom {〈𝐵, 𝐴〉} |
8 | dmsnopg 6244 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝐵, 𝐴〉} = {𝐵}) | |
9 | 7, 8 | eqtrid 2792 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 ◡ccnv 5699 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: rnpropg 6253 rnsnop 6255 funcnvpr 6640 funcnvtp 6641 dprdsn 20080 noextend 27729 usgr1e 29280 1loopgredg 29537 1egrvtxdg0 29547 uspgrloopedg 29554 cosnopne 32706 rnsnf 45091 |
Copyright terms: Public domain | W3C validator |