![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnsnopg | Structured version Visualization version GIF version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5700 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = dom ◡{〈𝐴, 𝐵〉} | |
2 | dfdm4 5909 | . . . 4 ⊢ dom {〈𝐵, 𝐴〉} = ran ◡{〈𝐵, 𝐴〉} | |
3 | df-rn 5700 | . . . 4 ⊢ ran ◡{〈𝐵, 𝐴〉} = dom ◡◡{〈𝐵, 𝐴〉} | |
4 | cnvcnvsn 6241 | . . . . 5 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
5 | 4 | dmeqi 5918 | . . . 4 ⊢ dom ◡◡{〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
6 | 2, 3, 5 | 3eqtri 2767 | . . 3 ⊢ dom {〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
7 | 1, 6 | eqtr4i 2766 | . 2 ⊢ ran {〈𝐴, 𝐵〉} = dom {〈𝐵, 𝐴〉} |
8 | dmsnopg 6235 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝐵, 𝐴〉} = {𝐵}) | |
9 | 7, 8 | eqtrid 2787 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {csn 4631 〈cop 4637 ◡ccnv 5688 dom cdm 5689 ran crn 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: rnpropg 6244 rnsnop 6246 funcnvpr 6630 funcnvtp 6631 f1ounsn 7292 dprdsn 20071 noextend 27726 usgr1e 29277 1loopgredg 29534 1egrvtxdg0 29544 uspgrloopedg 29551 cosnopne 32709 rnsnf 45127 |
Copyright terms: Public domain | W3C validator |