MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnopg Structured version   Visualization version   GIF version

Theorem rnsnopg 5798
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 5288 . . 3 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
2 dfdm4 5484 . . . 4 dom {⟨𝐵, 𝐴⟩} = ran {⟨𝐵, 𝐴⟩}
3 df-rn 5288 . . . 4 ran {⟨𝐵, 𝐴⟩} = dom {⟨𝐵, 𝐴⟩}
4 cnvcnvsn 5796 . . . . 5 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
54dmeqi 5493 . . . 4 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
62, 3, 53eqtri 2791 . . 3 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
71, 6eqtr4i 2790 . 2 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩}
8 dmsnopg 5790 . 2 (𝐴𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵})
97, 8syl5eq 2811 1 (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  {csn 4334  cop 4340  ccnv 5276  dom cdm 5277  ran crn 5278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rab 3064  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-xp 5283  df-rel 5284  df-cnv 5285  df-dm 5287  df-rn 5288
This theorem is referenced by:  rnpropg  5799  rnsnop  5801  funcnvpr  6129  funcnvtp  6130  dprdsn  18702  usgr1e  26416  1loopgredg  26688  1egrvtxdg0  26698  uspgrloopedg  26705  noextend  32263  rnsnf  40017
  Copyright terms: Public domain W3C validator