| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnsnopg | Structured version Visualization version GIF version | ||
| Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| rnsnopg | ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5665 | . . 3 ⊢ ran {〈𝐴, 𝐵〉} = dom ◡{〈𝐴, 𝐵〉} | |
| 2 | dfdm4 5875 | . . . 4 ⊢ dom {〈𝐵, 𝐴〉} = ran ◡{〈𝐵, 𝐴〉} | |
| 3 | df-rn 5665 | . . . 4 ⊢ ran ◡{〈𝐵, 𝐴〉} = dom ◡◡{〈𝐵, 𝐴〉} | |
| 4 | cnvcnvsn 6208 | . . . . 5 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
| 5 | 4 | dmeqi 5884 | . . . 4 ⊢ dom ◡◡{〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
| 6 | 2, 3, 5 | 3eqtri 2762 | . . 3 ⊢ dom {〈𝐵, 𝐴〉} = dom ◡{〈𝐴, 𝐵〉} |
| 7 | 1, 6 | eqtr4i 2761 | . 2 ⊢ ran {〈𝐴, 𝐵〉} = dom {〈𝐵, 𝐴〉} |
| 8 | dmsnopg 6202 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝐵, 𝐴〉} = {𝐵}) | |
| 9 | 7, 8 | eqtrid 2782 | 1 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 ◡ccnv 5653 dom cdm 5654 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: rnpropg 6211 rnsnop 6213 funcnvpr 6598 funcnvtp 6599 f1ounsn 7265 dprdsn 20019 noextend 27630 usgr1e 29224 1loopgredg 29481 1egrvtxdg0 29491 uspgrloopedg 29498 cosnopne 32671 rnsnf 45208 |
| Copyright terms: Public domain | W3C validator |