MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnsnopg Structured version   Visualization version   GIF version

Theorem rnsnopg 6230
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 5693 . . 3 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
2 dfdm4 5902 . . . 4 dom {⟨𝐵, 𝐴⟩} = ran {⟨𝐵, 𝐴⟩}
3 df-rn 5693 . . . 4 ran {⟨𝐵, 𝐴⟩} = dom {⟨𝐵, 𝐴⟩}
4 cnvcnvsn 6228 . . . . 5 {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}
54dmeqi 5911 . . . 4 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
62, 3, 53eqtri 2760 . . 3 dom {⟨𝐵, 𝐴⟩} = dom {⟨𝐴, 𝐵⟩}
71, 6eqtr4i 2759 . 2 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐵, 𝐴⟩}
8 dmsnopg 6222 . 2 (𝐴𝑉 → dom {⟨𝐵, 𝐴⟩} = {𝐵})
97, 8eqtrid 2780 1 (𝐴𝑉 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {csn 4632  cop 4638  ccnv 5681  dom cdm 5682  ran crn 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690  df-dm 5692  df-rn 5693
This theorem is referenced by:  rnpropg  6231  rnsnop  6233  funcnvpr  6620  funcnvtp  6621  dprdsn  20000  noextend  27619  usgr1e  29078  1loopgredg  29335  1egrvtxdg0  29345  uspgrloopedg  29352  cosnopne  32495  rnsnf  44587
  Copyright terms: Public domain W3C validator