MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdisj Structured version   Visualization version   GIF version

Theorem erdisj 8335
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
erdisj (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))

Proof of Theorem erdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4308 . . . 4 (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅))
2 simpl 485 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑅 Er 𝑋)
3 elinel1 4171 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐴]𝑅)
43adantl 484 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐴]𝑅)
5 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
6 ecexr 8288 . . . . . . . . . . 11 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
74, 6syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴 ∈ V)
8 elecg 8326 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
95, 7, 8sylancr 589 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
104, 9mpbid 234 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝑥)
11 elinel2 4172 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐵]𝑅)
1211adantl 484 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐵]𝑅)
13 ecexr 8288 . . . . . . . . . . 11 (𝑥 ∈ [𝐵]𝑅𝐵 ∈ V)
1412, 13syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵 ∈ V)
15 elecg 8326 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
165, 14, 15sylancr 589 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1712, 16mpbid 234 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵𝑅𝑥)
182, 10, 17ertr4d 8302 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝐵)
192, 18erthi 8334 . . . . . 6 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → [𝐴]𝑅 = [𝐵]𝑅)
2019ex 415 . . . . 5 (𝑅 Er 𝑋 → (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
2120exlimdv 1930 . . . 4 (𝑅 Er 𝑋 → (∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
221, 21syl5bi 244 . . 3 (𝑅 Er 𝑋 → (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ → [𝐴]𝑅 = [𝐵]𝑅))
2322orrd 859 . 2 (𝑅 Er 𝑋 → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ [𝐴]𝑅 = [𝐵]𝑅))
2423orcomd 867 1 (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wex 1776  wcel 2110  Vcvv 3494  cin 3934  c0 4290   class class class wbr 5058   Er wer 8280  [cec 8281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-er 8283  df-ec 8285
This theorem is referenced by:  qsdisj  8368
  Copyright terms: Public domain W3C validator