MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdisj Structured version   Visualization version   GIF version

Theorem erdisj 8817
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
erdisj (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))

Proof of Theorem erdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4375 . . . 4 (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅))
2 simpl 482 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑅 Er 𝑋)
3 elinel1 4224 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐴]𝑅)
43adantl 481 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐴]𝑅)
5 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
6 ecexr 8768 . . . . . . . . . . 11 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
74, 6syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴 ∈ V)
8 elecg 8807 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
95, 7, 8sylancr 586 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
104, 9mpbid 232 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝑥)
11 elinel2 4225 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐵]𝑅)
1211adantl 481 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐵]𝑅)
13 ecexr 8768 . . . . . . . . . . 11 (𝑥 ∈ [𝐵]𝑅𝐵 ∈ V)
1412, 13syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵 ∈ V)
15 elecg 8807 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
165, 14, 15sylancr 586 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1712, 16mpbid 232 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵𝑅𝑥)
182, 10, 17ertr4d 8782 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝐵)
192, 18erthi 8816 . . . . . 6 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → [𝐴]𝑅 = [𝐵]𝑅)
2019ex 412 . . . . 5 (𝑅 Er 𝑋 → (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
2120exlimdv 1932 . . . 4 (𝑅 Er 𝑋 → (∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
221, 21biimtrid 242 . . 3 (𝑅 Er 𝑋 → (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ → [𝐴]𝑅 = [𝐵]𝑅))
2322orrd 862 . 2 (𝑅 Er 𝑋 → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ [𝐴]𝑅 = [𝐵]𝑅))
2423orcomd 870 1 (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cin 3975  c0 4352   class class class wbr 5166   Er wer 8760  [cec 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-er 8763  df-ec 8765
This theorem is referenced by:  qsdisj  8852
  Copyright terms: Public domain W3C validator