MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdisj Structured version   Visualization version   GIF version

Theorem erdisj 7996
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
erdisj (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))

Proof of Theorem erdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4093 . . . 4 (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅))
2 simpl 474 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑅 Er 𝑋)
3 elin 3957 . . . . . . . . . . 11 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) ↔ (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
43simplbi 491 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐴]𝑅)
54adantl 473 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐴]𝑅)
6 vex 3352 . . . . . . . . . 10 𝑥 ∈ V
7 ecexr 7951 . . . . . . . . . . 11 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
85, 7syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴 ∈ V)
9 elecg 7987 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
106, 8, 9sylancr 581 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
115, 10mpbid 223 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝑥)
123simprbi 490 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐵]𝑅)
1312adantl 473 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐵]𝑅)
14 ecexr 7951 . . . . . . . . . . 11 (𝑥 ∈ [𝐵]𝑅𝐵 ∈ V)
1513, 14syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵 ∈ V)
16 elecg 7987 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
176, 15, 16sylancr 581 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1813, 17mpbid 223 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵𝑅𝑥)
192, 11, 18ertr4d 7965 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝐵)
202, 19erthi 7995 . . . . . 6 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → [𝐴]𝑅 = [𝐵]𝑅)
2120ex 401 . . . . 5 (𝑅 Er 𝑋 → (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
2221exlimdv 2028 . . . 4 (𝑅 Er 𝑋 → (∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
231, 22syl5bi 233 . . 3 (𝑅 Er 𝑋 → (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ → [𝐴]𝑅 = [𝐵]𝑅))
2423orrd 889 . 2 (𝑅 Er 𝑋 → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ [𝐴]𝑅 = [𝐵]𝑅))
2524orcomd 897 1 (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wex 1874  wcel 2155  Vcvv 3349  cin 3730  c0 4078   class class class wbr 4808   Er wer 7943  [cec 7944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pr 5061
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3351  df-sbc 3596  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-sn 4334  df-pr 4336  df-op 4340  df-br 4809  df-opab 4871  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-er 7946  df-ec 7948
This theorem is referenced by:  qsdisj  8026
  Copyright terms: Public domain W3C validator