Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecxpid Structured version   Visualization version   GIF version

Theorem ecxpid 31458
Description: The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Assertion
Ref Expression
ecxpid (𝑋𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴)

Proof of Theorem ecxpid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . 4 𝑥 ∈ V
2 elecg 8499 . . . 4 ((𝑥 ∈ V ∧ 𝑋𝐴) → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥))
31, 2mpan 686 . . 3 (𝑋𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥))
4 brxp 5627 . . . 4 (𝑋(𝐴 × 𝐴)𝑥 ↔ (𝑋𝐴𝑥𝐴))
54baib 535 . . 3 (𝑋𝐴 → (𝑋(𝐴 × 𝐴)𝑥𝑥𝐴))
63, 5bitrd 278 . 2 (𝑋𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑥𝐴))
76eqrdv 2736 1 (𝑋𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070   × cxp 5578  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  qsxpid  31460
  Copyright terms: Public domain W3C validator