Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecxpid | Structured version Visualization version GIF version |
Description: The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
ecxpid | ⊢ (𝑋 ∈ 𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | elecg 8499 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥)) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥)) |
4 | brxp 5627 | . . . 4 ⊢ (𝑋(𝐴 × 𝐴)𝑥 ↔ (𝑋 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
5 | 4 | baib 535 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑋(𝐴 × 𝐴)𝑥 ↔ 𝑥 ∈ 𝐴)) |
6 | 3, 5 | bitrd 278 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴)) |
7 | 6 | eqrdv 2736 | 1 ⊢ (𝑋 ∈ 𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 × cxp 5578 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: qsxpid 31460 |
Copyright terms: Public domain | W3C validator |