Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecxpid Structured version   Visualization version   GIF version

Theorem ecxpid 33332
Description: The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Assertion
Ref Expression
ecxpid (𝑋𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴)

Proof of Theorem ecxpid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . 4 𝑥 ∈ V
2 elecg 8715 . . . 4 ((𝑥 ∈ V ∧ 𝑋𝐴) → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥))
31, 2mpan 690 . . 3 (𝑋𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥))
4 brxp 5687 . . . 4 (𝑋(𝐴 × 𝐴)𝑥 ↔ (𝑋𝐴𝑥𝐴))
54baib 535 . . 3 (𝑋𝐴 → (𝑋(𝐴 × 𝐴)𝑥𝑥𝐴))
63, 5bitrd 279 . 2 (𝑋𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑥𝐴))
76eqrdv 2727 1 (𝑋𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107   × cxp 5636  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673
This theorem is referenced by:  qsxpid  33333
  Copyright terms: Public domain W3C validator