![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecxpid | Structured version Visualization version GIF version |
Description: The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.) |
Ref | Expression |
---|---|
ecxpid | ⊢ (𝑋 ∈ 𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | elecg 8807 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥)) | |
3 | 1, 2 | mpan 689 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥)) |
4 | brxp 5749 | . . . 4 ⊢ (𝑋(𝐴 × 𝐴)𝑥 ↔ (𝑋 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
5 | 4 | baib 535 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑋(𝐴 × 𝐴)𝑥 ↔ 𝑥 ∈ 𝐴)) |
6 | 3, 5 | bitrd 279 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴)) |
7 | 6 | eqrdv 2738 | 1 ⊢ (𝑋 ∈ 𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 × cxp 5698 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: qsxpid 33355 |
Copyright terms: Public domain | W3C validator |