Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecxpid Structured version   Visualization version   GIF version

Theorem ecxpid 33369
Description: The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Assertion
Ref Expression
ecxpid (𝑋𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴)

Proof of Theorem ecxpid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . 4 𝑥 ∈ V
2 elecg 8788 . . . 4 ((𝑥 ∈ V ∧ 𝑋𝐴) → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥))
31, 2mpan 690 . . 3 (𝑋𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑋(𝐴 × 𝐴)𝑥))
4 brxp 5738 . . . 4 (𝑋(𝐴 × 𝐴)𝑥 ↔ (𝑋𝐴𝑥𝐴))
54baib 535 . . 3 (𝑋𝐴 → (𝑋(𝐴 × 𝐴)𝑥𝑥𝐴))
63, 5bitrd 279 . 2 (𝑋𝐴 → (𝑥 ∈ [𝑋](𝐴 × 𝐴) ↔ 𝑥𝐴))
76eqrdv 2733 1 (𝑋𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148   × cxp 5687  [cec 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746
This theorem is referenced by:  qsxpid  33370
  Copyright terms: Public domain W3C validator