Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpel Structured version   Visualization version   GIF version

Theorem abfmpel 32641
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.)
Hypotheses
Ref Expression
abfmpel.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpel.2 {𝑦𝜑} ∈ V
abfmpel.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
abfmpel ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑊(𝑥)

Proof of Theorem abfmpel
StepHypRef Expression
1 abfmpel.2 . . . . . . 7 {𝑦𝜑} ∈ V
21csbex 5253 . . . . . 6 𝐴 / 𝑥{𝑦𝜑} ∈ V
3 abfmpel.1 . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
43fvmpts 6940 . . . . . 6 ((𝐴𝑉𝐴 / 𝑥{𝑦𝜑} ∈ V) → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
52, 4mpan2 691 . . . . 5 (𝐴𝑉 → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
6 csbab 4389 . . . . 5 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
75, 6eqtrdi 2784 . . . 4 (𝐴𝑉 → (𝐹𝐴) = {𝑦[𝐴 / 𝑥]𝜑})
87eleq2d 2819 . . 3 (𝐴𝑉 → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
98adantr 480 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
10 simpl 482 . . . . . . 7 ((𝐴𝑉𝑦 = 𝐵) → 𝐴𝑉)
11 abfmpel.3 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1211ancoms 458 . . . . . . . 8 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝜑𝜓))
1312adantll 714 . . . . . . 7 (((𝐴𝑉𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
1410, 13sbcied 3781 . . . . . 6 ((𝐴𝑉𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑𝜓))
1514ex 412 . . . . 5 (𝐴𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
1615alrimiv 1928 . . . 4 (𝐴𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
17 elabgt 3623 . . . 4 ((𝐵𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓))) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1816, 17sylan2 593 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1918ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
209, 19bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3437  [wsbc 3737  csb 3846  cmpt 5176  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496
This theorem is referenced by:  issiga  34148  ismeas  34235
  Copyright terms: Public domain W3C validator