| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpel | Structured version Visualization version GIF version | ||
| Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.) |
| Ref | Expression |
|---|---|
| abfmpel.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
| abfmpel.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| abfmpel.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| abfmpel | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abfmpel.2 | . . . . . . 7 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 2 | 1 | csbex 5249 | . . . . . 6 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V |
| 3 | abfmpel.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
| 4 | 3 | fvmpts 6932 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
| 5 | 2, 4 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
| 6 | csbab 4390 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} | |
| 7 | 5, 6 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
| 8 | 7 | eleq2d 2817 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → 𝐴 ∈ 𝑉) | |
| 11 | abfmpel.3 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
| 13 | 12 | adantll 714 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
| 14 | 10, 13 | sbcied 3785 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 15 | 14 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
| 16 | 15 | alrimiv 1928 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
| 17 | elabgt 3627 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) | |
| 18 | 16, 17 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
| 19 | 18 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
| 20 | 9, 19 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 [wsbc 3741 ⦋csb 3850 ↦ cmpt 5172 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: issiga 34123 ismeas 34210 |
| Copyright terms: Public domain | W3C validator |