Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpel Structured version   Visualization version   GIF version

Theorem abfmpel 32527
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.)
Hypotheses
Ref Expression
abfmpel.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpel.2 {𝑦𝜑} ∈ V
abfmpel.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
abfmpel ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑊(𝑥)

Proof of Theorem abfmpel
StepHypRef Expression
1 abfmpel.2 . . . . . . 7 {𝑦𝜑} ∈ V
21csbex 5312 . . . . . 6 𝐴 / 𝑥{𝑦𝜑} ∈ V
3 abfmpel.1 . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
43fvmpts 7007 . . . . . 6 ((𝐴𝑉𝐴 / 𝑥{𝑦𝜑} ∈ V) → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
52, 4mpan2 689 . . . . 5 (𝐴𝑉 → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
6 csbab 4439 . . . . 5 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
75, 6eqtrdi 2781 . . . 4 (𝐴𝑉 → (𝐹𝐴) = {𝑦[𝐴 / 𝑥]𝜑})
87eleq2d 2811 . . 3 (𝐴𝑉 → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
98adantr 479 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
10 simpl 481 . . . . . . 7 ((𝐴𝑉𝑦 = 𝐵) → 𝐴𝑉)
11 abfmpel.3 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1211ancoms 457 . . . . . . . 8 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝜑𝜓))
1312adantll 712 . . . . . . 7 (((𝐴𝑉𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
1410, 13sbcied 3819 . . . . . 6 ((𝐴𝑉𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑𝜓))
1514ex 411 . . . . 5 (𝐴𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
1615alrimiv 1922 . . . 4 (𝐴𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
17 elabgt 3657 . . . 4 ((𝐵𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓))) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1816, 17sylan2 591 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1918ancoms 457 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
209, 19bitrd 278 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098  {cab 2702  Vcvv 3461  [wsbc 3773  csb 3889  cmpt 5232  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557
This theorem is referenced by:  issiga  33864  ismeas  33951
  Copyright terms: Public domain W3C validator