Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpel Structured version   Visualization version   GIF version

Theorem abfmpel 30992
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.)
Hypotheses
Ref Expression
abfmpel.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpel.2 {𝑦𝜑} ∈ V
abfmpel.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
abfmpel ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑊(𝑥)

Proof of Theorem abfmpel
StepHypRef Expression
1 abfmpel.2 . . . . . . 7 {𝑦𝜑} ∈ V
21csbex 5235 . . . . . 6 𝐴 / 𝑥{𝑦𝜑} ∈ V
3 abfmpel.1 . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
43fvmpts 6878 . . . . . 6 ((𝐴𝑉𝐴 / 𝑥{𝑦𝜑} ∈ V) → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
52, 4mpan2 688 . . . . 5 (𝐴𝑉 → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
6 csbab 4371 . . . . 5 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
75, 6eqtrdi 2794 . . . 4 (𝐴𝑉 → (𝐹𝐴) = {𝑦[𝐴 / 𝑥]𝜑})
87eleq2d 2824 . . 3 (𝐴𝑉 → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
98adantr 481 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
10 simpl 483 . . . . . . 7 ((𝐴𝑉𝑦 = 𝐵) → 𝐴𝑉)
11 abfmpel.3 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1211ancoms 459 . . . . . . . 8 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝜑𝜓))
1312adantll 711 . . . . . . 7 (((𝐴𝑉𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
1410, 13sbcied 3761 . . . . . 6 ((𝐴𝑉𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑𝜓))
1514ex 413 . . . . 5 (𝐴𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
1615alrimiv 1930 . . . 4 (𝐴𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
17 elabgt 3603 . . . 4 ((𝐵𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓))) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1816, 17sylan2 593 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1918ancoms 459 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
209, 19bitrd 278 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432  [wsbc 3716  csb 3832  cmpt 5157  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  issiga  32080  ismeas  32167
  Copyright terms: Public domain W3C validator