Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpel Structured version   Visualization version   GIF version

Theorem abfmpel 32673
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.)
Hypotheses
Ref Expression
abfmpel.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpel.2 {𝑦𝜑} ∈ V
abfmpel.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
abfmpel ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑊(𝑥)

Proof of Theorem abfmpel
StepHypRef Expression
1 abfmpel.2 . . . . . . 7 {𝑦𝜑} ∈ V
21csbex 5329 . . . . . 6 𝐴 / 𝑥{𝑦𝜑} ∈ V
3 abfmpel.1 . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
43fvmpts 7032 . . . . . 6 ((𝐴𝑉𝐴 / 𝑥{𝑦𝜑} ∈ V) → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
52, 4mpan2 690 . . . . 5 (𝐴𝑉 → (𝐹𝐴) = 𝐴 / 𝑥{𝑦𝜑})
6 csbab 4463 . . . . 5 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
75, 6eqtrdi 2796 . . . 4 (𝐴𝑉 → (𝐹𝐴) = {𝑦[𝐴 / 𝑥]𝜑})
87eleq2d 2830 . . 3 (𝐴𝑉 → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
98adantr 480 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑}))
10 simpl 482 . . . . . . 7 ((𝐴𝑉𝑦 = 𝐵) → 𝐴𝑉)
11 abfmpel.3 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1211ancoms 458 . . . . . . . 8 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝜑𝜓))
1312adantll 713 . . . . . . 7 (((𝐴𝑉𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
1410, 13sbcied 3850 . . . . . 6 ((𝐴𝑉𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑𝜓))
1514ex 412 . . . . 5 (𝐴𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
1615alrimiv 1926 . . . 4 (𝐴𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓)))
17 elabgt 3685 . . . 4 ((𝐵𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑𝜓))) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1816, 17sylan2 592 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
1918ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ 𝜓))
209, 19bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  [wsbc 3804  csb 3921  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  issiga  34076  ismeas  34163
  Copyright terms: Public domain W3C validator