![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpel | Structured version Visualization version GIF version |
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.) |
Ref | Expression |
---|---|
abfmpel.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
abfmpel.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
abfmpel.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abfmpel | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abfmpel.2 | . . . . . . 7 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
2 | 1 | csbex 5317 | . . . . . 6 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V |
3 | abfmpel.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
4 | 3 | fvmpts 7019 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
5 | 2, 4 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
6 | csbab 4446 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} | |
7 | 5, 6 | eqtrdi 2791 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
8 | 7 | eleq2d 2825 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
10 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → 𝐴 ∈ 𝑉) | |
11 | abfmpel.3 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
12 | 11 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
13 | 12 | adantll 714 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
14 | 10, 13 | sbcied 3837 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
15 | 14 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
16 | 15 | alrimiv 1925 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
17 | elabgt 3672 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) | |
18 | 16, 17 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
19 | 18 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
20 | 9, 19 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 [wsbc 3791 ⦋csb 3908 ↦ cmpt 5231 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: issiga 34093 ismeas 34180 |
Copyright terms: Public domain | W3C validator |