![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpel | Structured version Visualization version GIF version |
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.) |
Ref | Expression |
---|---|
abfmpel.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
abfmpel.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
abfmpel.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abfmpel | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abfmpel.2 | . . . . . . 7 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
2 | 1 | csbex 5312 | . . . . . 6 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V |
3 | abfmpel.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
4 | 3 | fvmpts 7007 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
5 | 2, 4 | mpan2 689 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
6 | csbab 4439 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} | |
7 | 5, 6 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
8 | 7 | eleq2d 2811 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
9 | 8 | adantr 479 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
10 | simpl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → 𝐴 ∈ 𝑉) | |
11 | abfmpel.3 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
12 | 11 | ancoms 457 | . . . . . . . 8 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
13 | 12 | adantll 712 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
14 | 10, 13 | sbcied 3819 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
15 | 14 | ex 411 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
16 | 15 | alrimiv 1922 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
17 | elabgt 3657 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) | |
18 | 16, 17 | sylan2 591 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
19 | 18 | ancoms 457 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
20 | 9, 19 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2702 Vcvv 3461 [wsbc 3773 ⦋csb 3889 ↦ cmpt 5232 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 |
This theorem is referenced by: issiga 33864 ismeas 33951 |
Copyright terms: Public domain | W3C validator |