Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpel | Structured version Visualization version GIF version |
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.) |
Ref | Expression |
---|---|
abfmpel.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
abfmpel.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
abfmpel.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abfmpel | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abfmpel.2 | . . . . . . 7 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
2 | 1 | csbex 5235 | . . . . . 6 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V |
3 | abfmpel.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
4 | 3 | fvmpts 6878 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
5 | 2, 4 | mpan2 688 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
6 | csbab 4371 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} | |
7 | 5, 6 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
8 | 7 | eleq2d 2824 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
10 | simpl 483 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → 𝐴 ∈ 𝑉) | |
11 | abfmpel.3 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
12 | 11 | ancoms 459 | . . . . . . . 8 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
13 | 12 | adantll 711 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
14 | 10, 13 | sbcied 3761 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
15 | 14 | ex 413 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
16 | 15 | alrimiv 1930 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
17 | elabgt 3603 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) | |
18 | 16, 17 | sylan2 593 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
19 | 18 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
20 | 9, 19 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 [wsbc 3716 ⦋csb 3832 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: issiga 32080 ismeas 32167 |
Copyright terms: Public domain | W3C validator |