MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmff Structured version   Visualization version   GIF version

Theorem lmff 23209
Description: If 𝐹 converges, there is some upper integer set on which 𝐹 is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmff.5 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Assertion
Ref Expression
lmff (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
Distinct variable groups:   𝑗,𝐹   𝑗,𝐽   𝑗,𝑀   𝜑,𝑗   𝑗,𝑋   𝑗,𝑍

Proof of Theorem lmff
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmff.5 . . . . . 6 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
2 eldm2g 5837 . . . . . . 7 (𝐹 ∈ dom (⇝𝑡𝐽) → (𝐹 ∈ dom (⇝𝑡𝐽) ↔ ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽)))
32ibi 267 . . . . . 6 (𝐹 ∈ dom (⇝𝑡𝐽) → ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
41, 3syl 17 . . . . 5 (𝜑 → ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
5 df-br 5090 . . . . . 6 (𝐹(⇝𝑡𝐽)𝑦 ↔ ⟨𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
65exbii 1849 . . . . 5 (∃𝑦 𝐹(⇝𝑡𝐽)𝑦 ↔ ∃𝑦𝐹, 𝑦⟩ ∈ (⇝𝑡𝐽))
74, 6sylibr 234 . . . 4 (𝜑 → ∃𝑦 𝐹(⇝𝑡𝐽)𝑦)
8 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 lmcl 23205 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
108, 9sylan 580 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
11 eleq2 2818 . . . . . . 7 (𝑗 = 𝑋 → (𝑦𝑗𝑦𝑋))
12 feq3 6627 . . . . . . . 8 (𝑗 = 𝑋 → ((𝐹𝑥):𝑥𝑗 ↔ (𝐹𝑥):𝑥𝑋))
1312rexbidv 3154 . . . . . . 7 (𝑗 = 𝑋 → (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗 ↔ ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋))
1411, 13imbi12d 344 . . . . . 6 (𝑗 = 𝑋 → ((𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗) ↔ (𝑦𝑋 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)))
158lmbr 23166 . . . . . . . 8 (𝜑 → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗))))
1615biimpa 476 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗)))
1716simp3d 1144 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → ∀𝑗𝐽 (𝑦𝑗 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑗))
18 toponmax 22834 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
198, 18syl 17 . . . . . . 7 (𝜑𝑋𝐽)
2019adantr 480 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝑋𝐽)
2114, 17, 20rspcdva 3576 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → (𝑦𝑋 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋))
2210, 21mpd 15 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)
237, 22exlimddv 1936 . . 3 (𝜑 → ∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋)
24 uzf 12727 . . . 4 :ℤ⟶𝒫 ℤ
25 ffn 6647 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
26 reseq2 5920 . . . . . 6 (𝑥 = (ℤ𝑗) → (𝐹𝑥) = (𝐹 ↾ (ℤ𝑗)))
27 id 22 . . . . . 6 (𝑥 = (ℤ𝑗) → 𝑥 = (ℤ𝑗))
2826, 27feq12d 6635 . . . . 5 (𝑥 = (ℤ𝑗) → ((𝐹𝑥):𝑥𝑋 ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
2928rexrn 7015 . . . 4 (ℤ Fn ℤ → (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
3024, 25, 29mp2b 10 . . 3 (∃𝑥 ∈ ran ℤ(𝐹𝑥):𝑥𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
3123, 30sylib 218 . 2 (𝜑 → ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
32 lmff.4 . . . 4 (𝜑𝑀 ∈ ℤ)
33 lmff.1 . . . . 5 𝑍 = (ℤ𝑀)
3433rexuz3 15248 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
3532, 34syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
3616simp1d 1142 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐽)𝑦) → 𝐹 ∈ (𝑋pm ℂ))
377, 36exlimddv 1936 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
38 pmfun 8766 . . . . . 6 (𝐹 ∈ (𝑋pm ℂ) → Fun 𝐹)
3937, 38syl 17 . . . . 5 (𝜑 → Fun 𝐹)
40 ffvresb 7053 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4139, 40syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4241rexbidv 3154 . . 3 (𝜑 → (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗𝑍𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4341rexbidv 3154 . . 3 (𝜑 → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗 ∈ ℤ ∀𝑥 ∈ (ℤ𝑗)(𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑋)))
4435, 42, 433bitr4d 311 . 2 (𝜑 → (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋))
4531, 44mpbird 257 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wral 3045  wrex 3054  𝒫 cpw 4548  cop 4580   class class class wbr 5089  dom cdm 5614  ran crn 5615  cres 5616  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  pm cpm 8746  cc 10996  cz 12460  cuz 12724  TopOnctopon 22818  𝑡clm 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-pre-lttri 11072  ax-pre-lttrn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-neg 11339  df-z 12461  df-uz 12725  df-top 22802  df-topon 22819  df-lm 23137
This theorem is referenced by:  lmle  25221
  Copyright terms: Public domain W3C validator