MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldm2 Structured version   Visualization version   GIF version

Theorem releldm2 7857
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
releldm2 (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem releldm2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . . 3 (𝐵 ∈ dom 𝐴𝐵 ∈ V)
21anim2i 616 . 2 ((Rel 𝐴𝐵 ∈ dom 𝐴) → (Rel 𝐴𝐵 ∈ V))
3 id 22 . . . . 5 ((1st𝑥) = 𝐵 → (1st𝑥) = 𝐵)
4 fvex 6769 . . . . 5 (1st𝑥) ∈ V
53, 4eqeltrrdi 2848 . . . 4 ((1st𝑥) = 𝐵𝐵 ∈ V)
65rexlimivw 3210 . . 3 (∃𝑥𝐴 (1st𝑥) = 𝐵𝐵 ∈ V)
76anim2i 616 . 2 ((Rel 𝐴 ∧ ∃𝑥𝐴 (1st𝑥) = 𝐵) → (Rel 𝐴𝐵 ∈ V))
8 eldm2g 5797 . . . 4 (𝐵 ∈ V → (𝐵 ∈ dom 𝐴 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
98adantl 481 . . 3 ((Rel 𝐴𝐵 ∈ V) → (𝐵 ∈ dom 𝐴 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
10 df-rel 5587 . . . . . . . . 9 (Rel 𝐴𝐴 ⊆ (V × V))
11 ssel 3910 . . . . . . . . 9 (𝐴 ⊆ (V × V) → (𝑥𝐴𝑥 ∈ (V × V)))
1210, 11sylbi 216 . . . . . . . 8 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
1312imp 406 . . . . . . 7 ((Rel 𝐴𝑥𝐴) → 𝑥 ∈ (V × V))
14 op1steq 7848 . . . . . . 7 (𝑥 ∈ (V × V) → ((1st𝑥) = 𝐵 ↔ ∃𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1513, 14syl 17 . . . . . 6 ((Rel 𝐴𝑥𝐴) → ((1st𝑥) = 𝐵 ↔ ∃𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1615rexbidva 3224 . . . . 5 (Rel 𝐴 → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1716adantr 480 . . . 4 ((Rel 𝐴𝐵 ∈ V) → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
18 rexcom4 3179 . . . . 5 (∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩ ↔ ∃𝑦𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
19 risset 3193 . . . . . 6 (⟨𝐵, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
2019exbii 1851 . . . . 5 (∃𝑦𝐵, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑦𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
2118, 20bitr4i 277 . . . 4 (∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩ ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴)
2217, 21bitrdi 286 . . 3 ((Rel 𝐴𝐵 ∈ V) → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
239, 22bitr4d 281 . 2 ((Rel 𝐴𝐵 ∈ V) → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
242, 7, 23pm5.21nd 798 1 (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  wss 3883  cop 4564   × cxp 5578  dom cdm 5580  Rel wrel 5585  cfv 6418  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  reldm  7858  releldmdifi  7859  satffunlem1lem2  33265  satffunlem2lem2  33268
  Copyright terms: Public domain W3C validator