MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldm2 Structured version   Visualization version   GIF version

Theorem releldm2 7731
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
releldm2 (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem releldm2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3510 . . 3 (𝐵 ∈ dom 𝐴𝐵 ∈ V)
21anim2i 616 . 2 ((Rel 𝐴𝐵 ∈ dom 𝐴) → (Rel 𝐴𝐵 ∈ V))
3 id 22 . . . . 5 ((1st𝑥) = 𝐵 → (1st𝑥) = 𝐵)
4 fvex 6676 . . . . 5 (1st𝑥) ∈ V
53, 4syl6eqelr 2919 . . . 4 ((1st𝑥) = 𝐵𝐵 ∈ V)
65rexlimivw 3279 . . 3 (∃𝑥𝐴 (1st𝑥) = 𝐵𝐵 ∈ V)
76anim2i 616 . 2 ((Rel 𝐴 ∧ ∃𝑥𝐴 (1st𝑥) = 𝐵) → (Rel 𝐴𝐵 ∈ V))
8 eldm2g 5761 . . . 4 (𝐵 ∈ V → (𝐵 ∈ dom 𝐴 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
98adantl 482 . . 3 ((Rel 𝐴𝐵 ∈ V) → (𝐵 ∈ dom 𝐴 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
10 df-rel 5555 . . . . . . . . 9 (Rel 𝐴𝐴 ⊆ (V × V))
11 ssel 3958 . . . . . . . . 9 (𝐴 ⊆ (V × V) → (𝑥𝐴𝑥 ∈ (V × V)))
1210, 11sylbi 218 . . . . . . . 8 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
1312imp 407 . . . . . . 7 ((Rel 𝐴𝑥𝐴) → 𝑥 ∈ (V × V))
14 op1steq 7722 . . . . . . 7 (𝑥 ∈ (V × V) → ((1st𝑥) = 𝐵 ↔ ∃𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1513, 14syl 17 . . . . . 6 ((Rel 𝐴𝑥𝐴) → ((1st𝑥) = 𝐵 ↔ ∃𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1615rexbidva 3293 . . . . 5 (Rel 𝐴 → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
1716adantr 481 . . . 4 ((Rel 𝐴𝐵 ∈ V) → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩))
18 rexcom4 3246 . . . . 5 (∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩ ↔ ∃𝑦𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
19 risset 3264 . . . . . 6 (⟨𝐵, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
2019exbii 1839 . . . . 5 (∃𝑦𝐵, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑦𝑥𝐴 𝑥 = ⟨𝐵, 𝑦⟩)
2118, 20bitr4i 279 . . . 4 (∃𝑥𝐴𝑦 𝑥 = ⟨𝐵, 𝑦⟩ ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴)
2217, 21syl6bb 288 . . 3 ((Rel 𝐴𝐵 ∈ V) → (∃𝑥𝐴 (1st𝑥) = 𝐵 ↔ ∃𝑦𝐵, 𝑦⟩ ∈ 𝐴))
239, 22bitr4d 283 . 2 ((Rel 𝐴𝐵 ∈ V) → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
242, 7, 23pm5.21nd 798 1 (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  wrex 3136  Vcvv 3492  wss 3933  cop 4563   × cxp 5546  dom cdm 5548  Rel wrel 5553  cfv 6348  1st c1st 7676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fv 6356  df-1st 7678  df-2nd 7679
This theorem is referenced by:  reldm  7732  releldmdifi  7733  satffunlem1lem2  32547  satffunlem2lem2  32550
  Copyright terms: Public domain W3C validator